PyTorch中Tensor的数据统计示例
作者:Steven·简谈 发布时间:2021-03-05 01:04:53
张量范数:torch.norm(input, p=2) → float
返回输入张量 input 的 p 范数
举个例子:
>>> import torch
>>> a = torch.full([8], 1)
>>> b = a.view(2, 4)
>>> c = a.view(2, 2, 2)
>>> a.norm(1), b.norm(1), c.norm(1)# 求 1- 范数
(tensor(8.), tensor(8.), tensor(8.))
>>> a.norm(2), b.norm(2), c.norm(2)# 求 2- 范数
(tensor(2.8284), tensor(2.8284), tensor(2.8284))
>>> a.norm(3), b.norm(3), c.norm(3)# 求 ∞- 范数
(tensor(2.), tensor(2.), tensor(2.))
>>> b
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.]])
>>> b.norm(1, 1) # 在 1 维度上求 1- 范数
tensor([4., 4.])
>>> b.norm(2, 1) # 在 1 维度上求 2- 范数
b.norm(1, 2)
>>> c
tensor([[[1., 1.],
[1., 1.]],
[[1., 1.],
[1., 1.]]])
>>> c.norm(1, 0) # 在 0 维度上求 1- 范数
tensor([[2., 2.],
[2., 2.]])
>>> c.norm(2, 0) # 在 0 维度上求 2- 范数
tensor([[1.4142, 1.4142],
[1.4142, 1.4142]])
只有一个参数时,表示对整个张量求范数,参数表示范数的幂指数值。
有两个参数时,表示在张量某一维度对尺寸中每一部分求范数,第一个参数是范数的幂指数值,第二个参数是选择的维度。
张量统计
最基础的统计方法,比如张量中的最小值、最大值、均值、累加、累积。
举个例子:
>>> a = torch.arange(8).view(2, 4).float()
>>> a
tensor([[0., 1., 2., 3.],
[4., 5., 6., 7.]])
>>> a.min(), a.max(), a.mean(), a.sum(), a.prod() # 分别求最小值、最大值、均值、累加、累积
(tensor(0.), tensor(7.), tensor(3.5000), tensor(28.), tensor(0.))
>>> a.argmin(), a.argmax() # 分别是把张量打平后最小值、最大值的索引
(tensor(0), tensor(7))
>>> a.argmin(1), a.argmax(1) # 不打平求 1 维度中每一部分最小值、最大值的索引
(tensor([0, 0]), tensor([3, 3]))
dim和keepdim
>>> a = torch.randn(5, 10)
>>> a
tensor([[-0.6346, -0.9074, 0.1525, 0.1901, -0.5391, -0.2437, 1.0150, -0.0427,
-1.5336, 0.8542],
[-0.1879, 1.9947, -0.3524, -1.2559, -0.8129, -0.3018, 0.5654, 0.8428,
-0.3517, -0.7787],
[ 0.0686, 0.6166, 0.2632, -0.0947, -0.5592, -1.4041, 1.5565, 1.5616,
-1.3076, -0.1137],
[ 0.5205, -1.5716, -1.1277, 0.8096, -0.2123, -0.0974, 0.7698, 1.1373,
0.5165, 0.5256],
[-0.4162, 0.3170, 0.2368, 1.1695, -0.1960, -0.3285, 0.2420, 1.6468,
0.2646, 0.4573]])
>>> a.max(dim=1)
(tensor([1.0150, 1.9947, 1.5616, 1.1373, 1.6468]), tensor([6, 1, 7, 7, 7]))
>>> a.argmax(dim=1)
tensor([6, 1, 7, 7, 7])
max 添加 dim 后不仅显示了 1 维度中每一部分的最大值,还显示了其索引
>>> a.max(dim=1, keepdim=True)
(tensor([[1.0150],
[1.9947],
[1.5616],
[1.1373],
[1.6468]]), tensor([[6],
[1],
[7],
[7],
[7]]))
>>> a.argmax(dim=1, keepdim=True)
tensor([[6],
[1],
[7],
[7],
[7]])
保持维度一致。添加 keepdim 后,得出的结果维度不改变,原来是二维的数据,得出的结果还是二维。不添加得出的结果就是一维的。
比较操作
torch.topk(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)
沿给定 dim 维度返回输入张量 input 中 k 个最大值。 如果不指定 dim,则默认为 input 的最后一维。 如果为 largest 为 False ,则返回最小的 k 个值。
返回一个元组 (values,indices),其中 indices 是原始输入张量 input 中测元素下标。 如果设定布尔值 sorted 为_True_,将会确保返回的 k 个值被排序。
torch.kthvalue(input, k, dim=None, out=None) -> (Tensor, LongTensor) 取输入张量 input 指定维上第 k 个最小值。如果不指定 dim,则默认为 input 的最后一维。
返回一个元组 (values,indices),其中indices是原始输入张量input中沿dim维的第 k 个最小值下标。
举个例子:
>>> b = torch.randn(5, 10)
>>> b
tensor([[ 0.1863, 0.0160, -1.0657, -1.8984, 2.3274, 0.6534, 1.8126, 1.8666,
0.4830, -0.7800],
[-0.9359, -1.0655, 0.8321, 1.6265, 0.6812, -0.2870, 0.6987, 0.6067,
-0.1318, 0.7819],
[-3.1129, 0.9571, -0.1319, -1.0016, 0.7267, 0.1060, -0.2926, 0.3492,
1.0026, 0.2924],
[-0.7101, -0.8327, 0.5463, 0.3805, -0.8720, -1.6723, 0.0365, 1.5540,
0.1940, 1.4294],
[ 0.4174, -0.9414, -0.0351, -1.6142, -0.7802, -2.3916, -2.4822, 0.7233,
-0.7037, 0.2725]])
>>> b.topk(3, dim=1)
(tensor([[2.3274, 1.8666, 1.8126],
[1.6265, 0.8321, 0.7819],
[1.0026, 0.9571, 0.7267],
[1.5540, 1.4294, 0.5463],
[0.7233, 0.4174, 0.2725]]), tensor([[4, 7, 6],
[3, 2, 9],
[8, 1, 4],
[7, 9, 2],
[7, 0, 9]]))
>>> b.topk(3, dim=1, largest=False)
(tensor([[-1.8984, -1.0657, -0.7800],
[-1.0655, -0.9359, -0.2870],
[-3.1129, -1.0016, -0.2926],
[-1.6723, -0.8720, -0.8327],
[-2.4822, -2.3916, -1.6142]]), tensor([[3, 2, 9],
[1, 0, 5],
[0, 3, 6],
[5, 4, 1],
[6, 5, 3]]))
>>> a.kthvalue(8, dim=1)
(tensor([0.1034, 0.8940, 0.6155, 0.4210, 0.1955]), tensor([1, 2, 6, 4, 7]))
topk 添加 largest=False 就是返回最小,不添加就是返回最大。
kthvalue 返回以从大到小排列的指定位置的数。上面代码中即为返回第 8 小的数。
torch.eq(input, other, out=None) → Tensor
比较元素相等性。第二个参数可为一个数或与第一个参数同类型形状的张量。
torch.equal(tensor1, tensor2) → bool
如果两个张量有相同的形状和元素值,则返回 True ,否则 False。
举个例子:
>>> a = torch.ones(2, 3)
>>> b = torch.randn(2, 3)
>>> torch.eq(a, b)
tensor([[0, 0, 0],
[0, 0, 0]], dtype=torch.uint8)
>>> torch.eq(a, a)
tensor([[1, 1, 1],
[1, 1, 1]], dtype=torch.uint8)
>>> torch.equal(a, a)
True
eq 比较张量中的每个数据,equal 比较整个张量
来源:https://blog.csdn.net/weixin_44613063/article/details/89741228


猜你喜欢
- 本文实例讲述了Python实现简单的代理服务器。分享给大家供大家参考。具体如下:具备简单的管理功能,运行后 telnet localhost
- 先举个例子,分别以不指定编码、指定编码为 utf-8、指定编码为 utf-8-sig 三种方式来做比较,再将写入 csv 文件和 txt 文
- 本文实例为大家分享了python实现图像拼接的具体代码,供大家参考,具体内容如下一、效果 二、代码1、单张图片拼接# 图片拼接fr
- 本游戏程序实现的功能为本地二人对弈中国象棋,实现语言为javascript+VML,在windows 2000 pro+IE 6sp1的环境
- 论文:Interactive Image Warping(1993年Andreas Gustafsson)算法思路:假设当前点为(x,y),
- 一、乱码问题描述经常在爬虫或者一些操作的时候,经常会出现中文乱码等问题,如下原因是源网页编码和爬取下来后的编码格式不一致 二、利用
- 它解析并马上执行动态的SQL语句或非运行时创建的PL/SQL块.动态创建和执行SQL语句性能超前,EXECUTE IMMEDIATE的目标在
- 本文定期更换windows壁纸的python程序,很简单,属于自己写着玩的那种,不提供完美的壁纸切换解决方案。安装pywin32 exten
- 查看当前用户拥有的系统权限 select * from user_sys_privs; 系统权限 系统管理员授予-----sys用户 cre
- 具体代码如下:from django.template import loaderfrom emai
- 前言大家应该都有所体会,为了提高验证码的识别准确率,我们当然要首先得到足够多的测试数据。验证码下载下来容易,但是需要人脑手工识别着实让人受不
- 在数据预处理过程中可能需要将列的顺序颠倒,有两种方法。import numpy as npimport pandas as pddf = p
- 本文实例讲述了MySQL关于字符串中数字排序的问题。分享给大家供大家参考,具体如下:MySQL字符串相信大家都不陌生,在MySQL字符串排序
- Vue加载流程1.初始化的第一阶段是Vue实例也就是vm对象创建前后:首先Vue进行生命周期,事件初始化发生在beforeCreate生命周
- 写爬虫似乎没有比用 Python 更合适了,Python 社区提供的爬虫工具多得让你眼花缭乱,各种拿来就可以直接用的 library 分分钟
- 好记星不如烂笔头,适时的总结梳理知识让人更轻松愉快。今天总结下学习和开发中遇到的JavaScript执行顺序的问题,今天挖个坑,以后会慢慢填
- 废话不多说了,直奔主题了。mysql的四种启动方式:1、mysqld启动mysql服务器:./mysqld --defaults-file=
- JavaScript 语法约定1、大小写的区分1). JavaScript的关键字,永远都是小写的;2). 内置对象,如Math和Date是
- 给一个例子 :# -*- coding: utf-8 -*-import matplotlib.pyplot as plt im
- SQL Server 2005 和 2008 有几个关于高可用性的选项,如日志传输、副本和数据库镜像。所有这些技术都能够作为维护一个备用服务