pytorch训练神经网络爆内存的解决方案
作者:lyf_666 发布时间:2023-07-06 01:46:24
标签:pytorch,训练,神经网络,内存
训练的时候内存一直在增加,最后内存爆满,被迫中断。
后来换了一个电脑发现还是这样,考虑是代码的问题。
检查才发现我的代码两次存了loss,只有一个地方写的是loss.item()。问题就在loss,因为loss是variable类型。
要写成loss_train = loss_train + loss.item(),不能直接写loss_train = loss_train + loss。否则就会发现随着epoch的增加,占的内存也在一点一点增加。
算是一个小坑吧,希望大家还是要仔细。
补充:pytorch神经网络解决回归问题(非常易懂)
对于pytorch的深度学习框架
在建立人工神经网络时整体的步骤主要有以下四步:
1、载入原始数据
2、构建具体神经网络
3、进行数据的训练
4、数据测试和验证
pytorch神经网络的数据载入,以MINIST书写字体的原始数据为例:
import torch
import matplotlib.pyplot as plt
def plot_curve(data):
fig=plt.figure()
plt.plot(range(len(data)),data,color="blue")
plt.legend(["value"],loc="upper right")
plt.xlabel("step")
plt.ylabel("value")
plt.show()
def plot_image(img,label,name):
fig=plt.figure()
for i in range(6):
plt.subplot(2,3,i+1)
plt.tight_layout()
plt.imshow(img[i][0]*0.3081+0.1307,cmap="gray",interpolation="none")
plt.title("{}:{}".format(name, label[i].item()))
plt.xticks([])
plt.yticks([])
plt.show()
def one_hot(label,depth=10):
out=torch.zeros(label.size(0),depth)
idx=torch.LongTensor(label).view(-1,1)
out.scatter_(dim=1,index=idx,value=1)
return out
batch_size=512
import torch
from torch import nn #完成神经网络的构建包
from torch.nn import functional as F #包含常用的函数包
from torch import optim #优化工具包
import torchvision #视觉工具包
import matplotlib.pyplot as plt
from utils import plot_curve,plot_image,one_hot
#step1 load dataset 加载数据包
train_loader=torch.utils.data.DataLoader(
torchvision.datasets.MNIST("minist_data",train=True,download=True,transform=torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,),(0.3081,))
])),
batch_size=batch_size,shuffle=True)
test_loader=torch.utils.data.DataLoader(
torchvision.datasets.MNIST("minist_data",train=True,download=False,transform=torchvision.transforms.Compose(
[torchvision.transforms.ToTensor(),torchvision.transforms.Normalize((0.1307,),(0.3081,))
])),
batch_size=batch_size,shuffle=False)
x,y=next(iter(train_loader))
print(x.shape,y.shape)
plot_image(x,y,"image")
print(x)
print(y)
以构建一个简单的回归问题的神经网络为例,
其具体的实现代码如下所示:
import torch
import torch.nn.functional as F # 激励函数都在这
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2 * torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)
class Net(torch.nn.Module): # 继承 torch 的 Module(固定)
def __init__(self, n_feature, n_hidden, n_output): # 定义层的信息,n_feature多少个输入, n_hidden每层神经元, n_output多少个输出
super(Net, self).__init__() # 继承 __init__ 功能(固定)
# 定义每层用什么样的形式
self.hidden = torch.nn.Linear(n_feature, n_hidden) # 定义隐藏层,线性输出
self.predict = torch.nn.Linear(n_hidden, n_output) # 定义输出层线性输出
def forward(self, x): # x是输入信息就是data,同时也是 Module 中的 forward 功能,定义神经网络前向传递的过程,把__init__中的层信息一个一个的组合起来
# 正向传播输入值, 神经网络分析出输出值
x = F.relu(self.hidden(x)) # 定义激励函数(隐藏层的线性值)
x = self.predict(x) # 输出层,输出值
return x
net = Net(n_feature=1, n_hidden=10, n_output=1)
print(net) # net 的结构
"""
Net (
(hidden): Linear (1 -> 10)
(predict): Linear (10 -> 1)
)
"""
# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.2) # 传入 net 的所有参数, 学习率
loss_func = torch.nn.MSELoss() # 预测值和真实值的误差计算公式 (均方差)
for t in range(100): # 训练的步数100步
prediction = net(x) # 喂给 net 训练数据 x, 每迭代一步,输出预测值
loss = loss_func(prediction, y) # 计算两者的误差
# 优化步骤:
optimizer.zero_grad() # 清空上一步的残余更新参数值
loss.backward() # 误差反向传播, 计算参数更新值
optimizer.step() # 将参数更新值施加到 net 的 parameters 上
import matplotlib.pyplot as plt
plt.ion() # 实时画图something about plotting
for t in range(200):
prediction = net(x) # input x and predict based on x
loss = loss_func(prediction, y) # must be (1. nn output, 2. target)
optimizer.zero_grad() # clear gradients for next train
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
if t % 5 == 0: # 每五步绘一次图
# plot and show learning process
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5)
plt.text(0.5, 0, 'Loss=%.4f' % loss.data.numpy(), fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff()
plt.show()
来源:https://blog.csdn.net/lyf6_9123/article/details/115112729
0
投稿
猜你喜欢
- 本文实例讲述了sql server实现分页的方法。分享给大家供大家参考,具体如下:declare @index int,@num intse
- 准备工作我准备了两个表格数据,以此展示本期的表格的合并的工作。数据示例如下:表格1表格2接着将这两个表格的数据分别导入python中,导入代
- SpringBoot环境启动项目创建数据库表使用环境windows+eclipse+mysql+navicat步骤1.创建SpringBoo
- 官方给出Vue.filters(id , [definition])//id {string}//definition {function}
- Python实现截屏的函数# -*- coding: cp936 -*- import time,Image import os, win3
- 本文以实例形式讲述了Python实现抓取网页并解析的功能。主要解析问答与百度的首页。分享给大家供大家参考之用。主要功能代码如下:#!/usr
- 定义通用视图修改 book/models.py 代码中的 AuthorInfo 类,如果一致则不必修改class AuthorInfo(mo
- 先让我们看一个例子,了解什么是模式化窗口。以下是QQ秀商城在非登录时提示登录的一种状态。当我在非登录状态,通过保存形象的方式买一件衣服时,弹
- ini文件是windows中经常使用的配置文件,主要的格式为:[Section1]option1 : value1option2 : val
- MySQL Proxy(MySQL代理)是一个通过MySQL网络协议,提供MySQL服务器与客户端之间连接的应用工具,在基本配置条件下,My
- 本文实例讲述了PHP中使用addslashes函数转义的安全性原理分析。分享给大家供大家参考。具体分析如下:先来看一下ECshop中adds
- 一、普通用法 (手动调整size)view()相当于reshape、resize,重新调整Tensor的形状。import torcha1
- 本文实例讲述了Python实现matplotlib显示中文的方法。分享给大家供大家参考,具体如下:【注意】可能与本文主题无关,不过我还是想指
- 一个完整的域名,由根域、顶级域、二级、 * ……域名构成,每级域名之间用点分开,每级域名由字母、数字和减号构成(第一个字母不能是减号),不区分
- 前言:散点图,又称散点分布图,是使用多个坐标点的分布反映数据点分布规律、数据关联关系的图表,Matplotlib 中可以通过以下方式绘制散点
- 很多时候基于php+MySQL建立的网站所出现的系统性能瓶颈往往是出在MySQL上,而MySQL中用的最多的语句就是查询语句,因此,针对My
- 一.安装环境:Linux系统: CentOS 6.3 64位Oracle: Oracl
- 1 前言前面文章Python爬虫获取基金列表、Python爬虫获取基金基本信息我们已经介绍了怎么获取基金列表以及怎么获取基金基本信息,本文我
- 前言最近接到个任务是抽取mysql和Oracle的元数据,大致就是在库里把库、schema、表、字段、分区、索引、主键等信息抽取出来,然后导
- 其中使用到一个分页类CPaging 代码如下:Class CPaging Public RS