浅谈tensorflow中张量的提取值和赋值
作者:信道者 发布时间:2022-06-23 19:20:55
tf.gather和gather_nd从params中收集数值,tf.scatter_nd 和 tf.scatter_nd_update用updates更新某一张量。严格上说,tf.gather_nd和tf.scatter_nd_update互为逆操作。
已知数值的位置,从张量中提取数值:tf.gather, tf.gather_nd
tf.gather indices每个元素(标量)是params某个axis的索引,tf.gather_nd 中indices最后一个阶对应于索引值。
tf.gather函数
函数原型
gather(
params,
indices,
validate_indices=None,
name=None,
axis=0
)
params是要查找的张量,indices是要查找值的索引(int32或int64),axis是查找轴,name是操作名。
如果indices是标量
如果indices是向量
如果indices是高阶张量
返回值:
该函数返回值类型与params相同,具体值是从params中收集过来的,形状为
tf.gather_nd函数
函数原型
gather_nd(
params,
indices,
name=None
)
indices是K阶张量,包含K-1阶的索引值。它最后一阶是索引,最后一阶维度必须小于等于params的秩。indices最后一阶的维数等于params的秩时,我们得到params的某些元素;indices最后一阶的维数小于params的秩时,我们得到params的切片。
输出张量的形状由indices的K-1阶和params索引到的形状拼接而成,如下面
indices.shape[:-1] + params.shape[indices.shape[-1]:]
参数:
params:被收集的张量。
indices:索引张量。必须是以下类型之一:int32,int64。
name:操作的名称(可选)。
返回值:
该函数返回一个张量.与params具有相同的类型。张量值从indices所给定的索引中收集,并且具有这样的形状:
已知赋值的位置,向张量赋值:tf.scatter_nd, tf.scatter_nd_update
tf.scatter_nd对零张量进行赋值,tf.scatter_nd_update对已有可变的张量进行赋值。
tf.scatter_nd函数
scatter_nd(
indices,
updates,
shape,
name=None
)
创建一个形状为shape的零张量,将updates赋值到indices指定的位置。
indices是整数张量,最内部维度对应于索引。
indices.shape[-1] <= shape.rank
如果indices.shape[-1] = shape.rank,那么indices直接对应到新张量的单个元素。如果indices.shape[-1] < shape.rank,那么indices中每个元素对新张量做切片操作。updates的形状应该如下所示
indices.shape[:-1] + shape[indices.shape[-1]:]
如果我们要把形状为(4,)的updates赋值给形状为(8,)的零张量,如下图所示。
我们需要这样子做
indices = tf.constant([[4], [3], [1], [7]])
updates = tf.constant([9, 10, 11, 12])
shape = tf.constant([8])
scatter = tf.scatter_nd(indices, updates, shape)
with tf.Session() as sess:
print(sess.run(scatter))
我们得到这样子的张量
[0, 11, 0, 10, 9, 0, 0, 12]
上面代码中,indices的形状是(4,1),updates的形状是(4,),shape的形状是(8,)。
indices.shape[:-1]+shape[indices.shape[-1]:] = (4,)+(,)=(4,)
如果我们要在三阶张量中插入两个切片,如下图所示,则应该像下面代码里所说的那样子做。
indices = tf.constant([[0], [2]])
updates = tf.constant([[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]],
[[5, 5, 5, 5], [6, 6, 6, 6],
[7, 7, 7, 7], [8, 8, 8, 8]]])
shape = tf.constant([4, 4, 4])
scatter = tf.scatter_nd(indices, updates, shape)
with tf.Session() as sess:
print(sess.run(scatter))
indices的形状是(2,1),updates的形状是(2,4,4),shape的形状是(4,4,4)。
indices.shape[:-1]+shape[indices.shape[-1]:]=(2,)+(4,4)=(2,4,4)
我们会得到这样子的张量
[[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]],
[[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]],
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]]
函数参数
indices:Tensor;必须是以下类型之一:int32,int64;索引值张量。
updates:Tensor;分散到输出的更新。
shape:Tensor;必须与indices具有相同的类型;1-d;得到的张量的形状。
name:操作的名称(可选)。
返回值
此函数返回一个Tensor,它与updates有相同的类型;一个有shape形状的新张量,初始化值为0,部分值根据indices用updates进行更新。
tf.scatter_nd_update函数
函数原型
scatter_nd_update(
ref,
indices,
updates,
use_locking=True,
name=None
)
scatter_nd_update也是把updates里面的值根据indices赋值到另外一个张量中,与scatter_nd不同的是,它是赋值到ref。
ref是秩为P的张量,indices是秩为Q的张量。
indices是整数类型的张量,必须具有这样的形状 。
indices最内部的维度对应于ref的某个元素或切片。
updates的形状是 ,是秩为Q-1+P-K的张量。
如果我们想要把(4,)的向量赋值到(8,)的ref中,我们可以像下面这样子操作。
ref = tf.Variable([1, 2, 3, 4, 5, 6, 7, 8])
indices = tf.constant([[4], [3], [1] ,[7]])
updates = tf.constant([9, 10, 11, 12])
update = tf.scatter_nd_update(ref, indices, updates)
with tf.Session() as sess:
print sess.run(update)
我们可以得到这样的ref
[1, 11, 3, 10, 9, 6, 7, 12]
函数参数
ref:一个可变的Tensor。
indices:一个 int32 或 int64 Tensor;一个对ref进行索引的张量.
updates:一个Tensor.必须与ref具有相同的类型;更新值张量.
use_locking:可选的bool;如果为True,则赋值将受锁定的保护;否则行为是不确定的,但可能表现出较少的争用.
name:操作的名称(可选).
返回值:
经过更新的ref。
来源:https://blog.csdn.net/chr1991/article/details/93474638


猜你喜欢
- 管理界面是基础设施中非常重要的一部分。这是以网页和有限的可信任管理者为基础的界面,它可以让你添加,编辑和删除网站内容。Django有自己的自
- 备注1:解决连接MySQL数据库很慢的问题vim /etc/my.cnf添加内容:skip-name-resolve,重启数据库。 
- #!/usr/bin/env python# name IsOpen.pyimport osimport socketdef IsOpen(
- (1)饼图(pie),即在一个圆圈内分成几块,显示不同数据系列的占比大小,这也是我们在日常数据的图形展示中最常用的图形之一。在python中
- Javascript有许多内建的方法来产生对话框,如:window.alert(), window.confirm(),window.pro
- 如果机房马上要关门了,或者你急着要和MM约会,请直接跳到第四个自然段。以下叙述的脚本包括服务器端脚本和客户端的脚本,服务器端脚本指在服务器上
- python各类经纬度转换,具体代码如下所示:import mathimport urllibimport jsonx_pi = 3.141
- 本文实例讲述了python读取word文档的方法。分享给大家供大家参考。具体如下:首先下载安装win32comfrom win32com i
- 一、写在前面作为一名测试,有时候经常会遇到需要录屏记录自己操作,方便后续开发同学定位。以前都是用ScreenToGif来录屏制作成动态图,偶
- Math.random()Math.random()是JavaScript默认提供的生成随机数的方法。该方法返回一个0到1之间的浮点数,其值
- uWSGI是一个Web应用服务器,它具有应用服务器,代理,进程管理及应用监控等功能。它支持WSGI协议,同时它也支持自有的uWSGI协议,该
- 如何把imagenet预训练的模型,输入层的通道数随心所欲的修改,从而来适应自己的任务#增加一个通道w = layers[0].weight
- 合并与分割tf.concattf.concat可以帮助我们实现拼接操作.格式:tf.concat( values,
- 这样处理的弊端是:如果数据量大,子分类很多,达到4级以上,这方法处理极端占用数据库连接池 对性能影响很大。 如果用SQL下面的CTE递归处理
- 编码问题因为涉及到中文,所以必然地涉及到了编码的问题,这一次借这个机会算是彻底搞清楚了。问题要从文字的编码讲起。原本的英文编码只有0~255
- 本文实例为大家分享了python模拟事件触发机制的具体代码,供大家参考,具体内容如下EventManager.py# -*- encodin
- 什么是索引拿汉语字典的目录页(索引)打比方:正如汉语字典中的汉字按页存放一样,SQL Server中的数据记录也是按页存放的,每页容量一般为
- 字符串Go语言中的字符串以原生数据类型出现。 Go 语言里的字符串的内部实现使用UTF-8编码。 字符串的值为双引号(")中的内容
- 前言本文主要给大家介绍了关于python使用正则表达式的非贪婪模式的相关内容,分享出来供大家参考学习,下面话不多说了,来一起详细的介绍吧。在
- 美化主要表现在鼠标放到菜单上后(即鼠标悬停)的效果,这里首先介绍几个经常用到的CSS属性:backgr