python时间序列按频率生成日期的方法
作者:李太阳❀ 发布时间:2021-10-04 22:38:40
标签:python,时间序列
有时候我们的数据是按某个频率收集的,比如每日、每月、每15分钟,那么我们怎么产生对应频率的索引呢?pandas中的date_range可用于生成指定长度的DatetimeIndex。
我们先看一下怎么生成日期范围:pd.date_range(startdate,enddate)
1.生成指定开始日期和结束日期的时间范围:
In:import pandas as pd
index = pd.date_range('4/1/2019','5/1/2019')
print(index)
Out:
DatetimeIndex(['2019-04-01', '2019-04-02', '2019-04-03', '2019-04-04',
'2019-04-05', '2019-04-06', '2019-04-07', '2019-04-08',
'2019-04-09', '2019-04-10', '2019-04-11', '2019-04-12',
'2019-04-13', '2019-04-14', '2019-04-15', '2019-04-16',
'2019-04-17', '2019-04-18', '2019-04-19', '2019-04-20',
'2019-04-21', '2019-04-22', '2019-04-23', '2019-04-24',
'2019-04-25', '2019-04-26', '2019-04-27', '2019-04-28',
'2019-04-29', '2019-04-30', '2019-05-01'],
dtype='datetime64[ns]', freq='D')
也可以只指定开始日期或结束日期,但这时必须要输入一个时间长度,并且指定输入的是开始时间还是结束时间,如果不指定默认是开始时间。
date_range(startdate/enddate,periods)
In:print(pd.date_range(start = '4/1/2019',periods = 10))
Out:DatetimeIndex(['2019-04-01', '2019-04-02', '2019-04-03', '2019-04-04',
'2019-04-05', '2019-04-06', '2019-04-07', '2019-04-08',
'2019-04-09', '2019-04-10'],
dtype='datetime64[ns]', freq='D')
In:print(pd.date_range(start = '5/1/2019',periods = 10))
Out:DatetimeIndex(['2019-05-01', '2019-05-02', '2019-05-03', '2019-05-04',
'2019-05-05', '2019-05-06', '2019-05-07', '2019-05-08',
'2019-05-09', '2019-05-10'],
dtype='datetime64[ns]', freq='D')
现在我们已经知道怎么生成日期范围了,但是上面我们生成的日期的时间间隔都是天,接下来告诉大家怎么生成其他时间频率的日期范围。
要生成按某个频率计算的日期范围,只需要在date_range后加上freq就可以了。比如,生成每小时间隔的时间:
In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = 'h'))
Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:00:00',
'2019-05-01 02:00:00', '2019-05-01 03:00:00',
'2019-05-01 04:00:00', '2019-05-01 05:00:00',
'2019-05-01 06:00:00', '2019-05-01 07:00:00',
'2019-05-01 08:00:00', '2019-05-01 09:00:00'],
dtype='datetime64[ns]', freq='H')
生成时间间隔为3个小时的时间:
In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = '3h'))
Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:00:00',
'2019-05-01 02:00:00', '2019-05-01 03:00:00',
'2019-05-01 04:00:00', '2019-05-01 05:00:00',
'2019-05-01 06:00:00', '2019-05-01 07:00:00',
'2019-05-01 08:00:00', '2019-05-01 09:00:00'],
dtype='datetime64[ns]', freq='H')
生成时间间隔为1小时30分的时间:
In:print(pd.date_range(start = '5/1/2019',periods = 10,freq = '1h30min'))
Out:DatetimeIndex(['2019-05-01 00:00:00', '2019-05-01 01:30:00',
'2019-05-01 03:00:00', '2019-05-01 04:30:00',
'2019-05-01 06:00:00', '2019-05-01 07:30:00',
'2019-05-01 09:00:00', '2019-05-01 10:30:00',
'2019-05-01 12:00:00', '2019-05-01 13:30:00'],
dtype='datetime64[ns]', freq='90T')
python还可以生成其他不规则频率的时间,比如每月的第一个工作日,每月的第一个日历日等
生成每月的第一个工作日:
In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'BMS'))
Out:DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01',
'2019-05-01', '2019-06-03', '2019-07-01', '2019-08-01',
'2019-09-02', '2019-10-01', '2019-11-01', '2019-12-02'],
dtype='datetime64[ns]', freq='BMS')
生成每月的第一个日历日:
In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'MS'))
Out:DatetimeIndex(['2019-01-01', '2019-02-01', '2019-03-01', '2019-04-01',
'2019-05-01', '2019-06-01', '2019-07-01', '2019-08-01',
'2019-09-01', '2019-10-01', '2019-11-01', '2019-12-01'],
dtype='datetime64[ns]', freq='MS')
有一种很实用的频率类,为“WOM”,即每月的几个星期几。比如每月的第三个星期五。如果我们每月的第三个星期五发工资,这样就可以很方便的知道今年每个月的工资日了。
In:print(pd.date_range(start = '1/1/2019',periods = 12,freq = 'WOM-3FRI'))
Out:DatetimeIndex(['2019-01-18', '2019-02-15', '2019-03-15', '2019-04-19',
'2019-05-17', '2019-06-21', '2019-07-19', '2019-08-16',
'2019-09-20', '2019-10-18', '2019-11-15', '2019-12-20'],
dtype='datetime64[ns]', freq='WOM-3FRI')
下面是python可使用的时间序列的基础频率表:
别名 | 偏移量类型 | 说明 |
---|---|---|
D | Day | 每日历日 |
B | BusinessDay | 每工作日 |
H | Hour | 每小时 |
T或min | Minute | 每分钟 |
S | Second | 每秒 |
L或ms | Milli | 每毫秒 |
U | Micro | 每微秒 |
M | MonthEnd | 每月最后一个日历日 |
BM | BusinessMonthEnd | 每月最后一个工作日 |
MS | MonthBegin | 每月第一个日历日 |
BMS | BusinessMonthBegin | 每月第一个工作日 |
W-MON、W-TUE | Week | 每周的星期几 |
WOM-1MON、WOM-2MON | WeekofMonth | 每月第几周的星期几 |
Q-JAN、Q-FEB | QuarterEnd | 每个季度对应的该月份的最后一个日历日 |
BQ-JAN、BQ-FEB | BusinessQuarterEnd | 每个季度对应的该月份的最后一个工作日 |
QS-JAN、QS-FEB | QuarterBegin | 每个季度对应的该月份的第一个日历日 |
BQS-JAN、BQS-FEB | QuarterBegin | 每个季度对应的该月份的第一个工作日 |
A-JAN、B-FEB | YearEnd | 每年指定月份的最后一个日历日 |
BA-JAN、BA-FEB | BusinessYearEnd | 每年指定月份的最后一个工作日 |
AS-JAN、AS-FEB | YearBegin | 每年指定月份的第一个日历日 |
BAS-JAN、BAS-FEB | BusinessYearBegin | 每年指定月份的第一个工作日 |
以上所述是小编给大家介绍的python时间序列按频率生成日期的方法详解整合网站的支持!
来源:https://blog.csdn.net/weixin_43342981/article/details/90144285


猜你喜欢
- 从大规模数据集中寻找物品间的隐含关系被称作关联分析或关联规则学习。过程分为两步:1.提取频繁项集。2.从频繁项集中抽取出关联规则。 频繁项集
- 如果我有个list,想判断其中的元素是否满一个条件,后面的元素大于或等于前面元素。Python中的写法就比较多了。下面就主要介绍下一般的写法
- VSCode卸载后进行重新安装,发现新安装的还有原来的一些配置,卸载的不彻底,有时候也容易出问题,可按照如下方法卸载干净:1.进入控制面板卸
- 1. 创建一个新的环境打开Anaconda Navigator,找不到的win10左下角输入一下就能找到了,如下图。这里通过列表下面的cre
- 将数据库中的信息存储至XML文件中:save.asp<!-- #include file="adovbs
- MySQL 在处理 GROUP BY 和 DISTINCT 查询的方式在大多数情况下类似,事实上,在优化过程中有时候会把在这两种方式中转换。
- 这是我研究网页切片算法的一个汇总想法。之前我写过:一种面向搜索引擎的网页分块、切片的原理,实现和演示,随着工作的深入,逐渐碰到以
- next()方法当一个文件被用作迭代器,典型例子是在一个循环中被使用,next()方法被反复调用。此方法返回下一个输入行,或引发
- 看下面的一组例子:alert(true.toString());alert(false.toString());alert(1.123.to
- 本文实例讲述了Python3.5编程实现修改IIS WEB.CONFIG的方法。分享给大家供大家参考,具体如下:#!/usr/bin/env
- 我需要查询从现在算起五天前的日期。按照商业习惯,这五天应该不包含星期六和星期天。专家回答:对于许多跟商业日期有关的情况,最好的解决方案是使用
- 因为这两天在弄自己的一个问答程序www.sosoask.com ,结果发现开发人员把我的存储过程加密了,郁闷,还好找到解决方法了,现在共享下
- 引言我们日常开发中,如何保证接口数据的安全性呢?个人觉得,接口数据安全的保证过程,主要体现在这几个方面:一个就是数据传输过程中的安全,还有就
- 一、人脸图像特征提取方法https://www.jb51.net/article/219446.htm二、对笑脸数据集genki4k进行训练
- 前言:Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数,itertools提供的几个“无限
- 写在之前命名空间,又名 namesapce,是在很多的编程语言中都会出现的术语,估计很多人都知道这个词,但是让你真的来说这是个什么,估计就歇
- 一、背景(正)地理编码指的是:将地理位置名称转换成经纬度;逆地理编码指的是:将经纬度转换成地理位置信息,如地名、所在的省份或城市等百度地图提
- 有点抱歉的是我的数学功底确实是不好,经过了高中的紧张到了大学之后松散了下来。原本高中就有点拖后腿的数学到了大学之后更是一落千丈。线性代数直接
- 搜索是大数据领域里常见的需求。Splunk和ELK分别是该领域在非开源和开源领域里的领导者。本文利用很少的Python代码实现了一个基本的数
- 有时候,我们在某一重要的时间段需要监控某张表的变化情况,包含插入、更新、删除。举例来说,当我们把数据导出到外部的系统时,我们希望导出的是全部