分享Python 加速运行技巧
作者:Python研究者 发布时间:2022-07-07 12:48:04
前言:
Python 是一种脚本语言,相比 C/C++ 这样的编译语言,在效率和性能方面存在一些不足。但是,有很多时候,Python 的效率并没有想象中的那么夸张。本文对一些 Python 代码加速运行的技巧进行整理。
代码优化原则:
本文会介绍不少的 Python 代码加速运行的技巧。在深入代码优化细节之前,需要了解一些代码优化基本原则。
第一个基本原则:不要过早优化
很多人一开始写代码就奔着性能优化的目标,“让正确的程序更快要比让快速的程序正确容易得多”。因此,优化的前提是代码能正常工作。过早地进行优化可能会忽视对总体性能指标的把握,在得到全局结果前不要主次颠倒。
第二个基本原则:权衡优化的代价
优化是有代价的,想解决所有性能的问题是几乎不可能的。通常面临的选择是时间换空间或空间换时间。另外,开发代价也需要考虑。
第三个原则:不要优化那些无关紧要的部分
如果对代码的每一部分都去优化,这些修改会使代码难以阅读和理解。如果你的代码运行速度很慢,首先要找到代码运行慢的位置,通常是内部循环,专注于运行慢的地方进行优化。在其他地方,一点时间上的损失没有什么影响。
1.避免全局变量
# 不推荐写法。代码耗时:26.8秒
import math
size = 10000
for x in range(size):
for y in range(size):
z = math.sqrt(x) + math.sqrt(y)
许多程序员刚开始会用 Python
语言写一些简单的脚本,当编写脚本时,通常习惯了直接将其写为全局变量,例如上面的代码。但是,由于全局变量和局部变量实现方式不同,定义在全局范围内的代码运行速度会比定义在函数中的慢不少。通过将脚本语句放入到函数中,通常可带来 15% - 30% 的速度提升。
# 推荐写法。代码耗时:20.6秒
import math
def main(): # 定义到函数中,以减少全部变量使用
size = 10000
for x in range(size):
for y in range(size):
z = math.sqrt(x) + math.sqrt(y)
main()
2.避免
2.1 避免模块和函数属性访问
# 不推荐写法。代码耗时:14.5秒
import math
def computeSqrt(size: int):
result = []
for i in range(size):
result.append(math.sqrt(i))
return result
def main():
size = 10000
for _ in range(size):
result = computeSqrt(size)
main()
每次使用.(属性访问操作符时)会触发特定的方法,如__getattribute__()
和__getattr__()
,这些方法会进行字典操作,因此会带来额外的时间开销。通过from import语句,可以消除属性访问。
# 第一次优化写法。代码耗时:10.9秒
from math import sqrt
def computeSqrt(size: int):
result = []
for i in range(size):
result.append(sqrt(i)) # 避免math.sqrt的使用
return result
def main():
size = 10000
for _ in range(size):
result = computeSqrt(size)
main()
在第 1 节中我们讲到,局部变量的查找会比全局变量更快,因此对于频繁访问的变量sqrt,通过将其改为局部变量可以加速运行。
# 第二次优化写法。代码耗时:9.9秒
import math
def computeSqrt(size: int):
result = []
sqrt = math.sqrt # 赋值给局部变量
for i in range(size):
result.append(sqrt(i)) # 避免math.sqrt的使用
return result
def main():
size = 10000
for _ in range(size):
result = computeSqrt(size)
main()
除了math.sqrt
外,computeSqrt
函数中还有.的存在,那就是调用list的append方法。通过将该方法赋值给一个局部变量,可以彻底消除computeSqrt
函数中for循环内部的.使用。
# 推荐写法。代码耗时:7.9秒
import math
def computeSqrt(size: int):
result = []
append = result.append
sqrt = math.sqrt # 赋值给局部变量
for i in range(size):
append(sqrt(i)) # 避免 result.append 和 math.sqrt 的使用
return result
def main():
size = 10000
for _ in range(size):
result = computeSqrt(size)
main()
2.2 避免类内属性访问
# 不推荐写法。代码耗时:10.4秒
import math
from typing import List
class DemoClass:
def __init__(self, value: int):
self._value = value
def computeSqrt(self, size: int) -> List[float]:
result = []
append = result.append
sqrt = math.sqrt
for _ in range(size):
append(sqrt(self._value))
return result
def main():
size = 10000
for _ in range(size):
demo_instance = DemoClass(size)
result = demo_instance.computeSqrt(size)
main()
避免.的原则也适用于类内属性,访问self._value的速度会比访问一个局部变量更慢一些。通过将需要频繁访问的类内属性赋值给一个局部变量,可以提升代码运行速度。
# 推荐写法。代码耗时:8.0秒
import math
from typing import List
class DemoClass:
def __init__(self, value: int):
self._value = value
def computeSqrt(self, size: int) -> List[float]:
result = []
append = result.append
sqrt = math.sqrt
value = self._value
for _ in range(size):
append(sqrt(value)) # 避免 self._value 的使用
return result
def main():
size = 10000
for _ in range(size):
demo_instance = DemoClass(size)
demo_instance.computeSqrt(size)
main()
3.避免不必要的抽象
# 不推荐写法,代码耗时:0.55秒
class DemoClass:
def __init__(self, value: int):
self.value = value
@property
def value(self) -> int:
return self._value
@value.setter
def value(self, x: int):
self._value = x
def main():
size = 1000000
for i in range(size):
demo_instance = DemoClass(size)
value = demo_instance.value
demo_instance.value = i
main()
任何时候当你使用额外的处理层(比如装饰器、属性访问、描述器)去包装代码时,都会让代码变慢。大部分情况下,需要重新进行审视使用属性访问器的定义是否有必要,使用getter/setter函数对属性进行访问通常是 C/C++ 程序员遗留下来的代码风格。如果真的没有必要,就使用简单属性。
# 推荐写法,代码耗时:0.33秒
class DemoClass:
def __init__(self, value: int):
self.value = value # 避免不必要的属性访问器
def main():
size = 1000000
for i in range(size):
demo_instance = DemoClass(size)
value = demo_instance.value
demo_instance.value = i
main()
4.避免数据复制
4.1 避免无意义的数据复制
# 不推荐写法,代码耗时:6.5秒
def main():
size = 10000
for _ in range(size):
value = range(size)
value_list = [x for x in value]
square_list = [x * x for x in value_list]
main()
上面的代码中value_list
完全没有必要,这会创建不必要的数据结构或复制。
# 推荐写法,代码耗时:4.8秒
def main():
size = 10000
for _ in range(size):
value = range(size)
square_list = [x * x for x in value] # 避免无意义的复制
main()
另外一种情况是对 Python 的数据共享机制过于偏执,并没有很好地理解或信任 Python 的内存模型,滥用 copy.deepcopy()
之类的函数。通常在这些代码中是可以去掉复制操作的。
4.2 交换值时不使用中间变量
# 不推荐写法,代码耗时:0.07秒
def main():
size = 1000000
for _ in range(size):
a = 3
b = 5
temp = a
a = b
b = temp
main()
上面的代码在交换值时创建了一个临时变量temp
,如果不借助中间变量,代码更为简洁、且运行速度更快。
# 推荐写法,代码耗时:0.06秒
def main():
size = 1000000
for _ in range(size):
a = 3
b = 5
a, b = b, a # 不借助中间变量
main()
4.3 字符串拼接用join而不是+
# 不推荐写法,代码耗时:2.6秒
import string
from typing import List
def concatString(string_list: List[str]) -> str:
result = ''
for str_i in string_list:
result += str_i
return result
def main():
string_list = list(string.ascii_letters * 100)
for _ in range(10000):
result = concatString(string_list)
main()
当使用a + b拼接字符串时,由于 Python
中字符串是不可变对象,其会申请一块内存空间,将a和b分别复制到该新申请的内存空间中。因此,如果要拼接n个字符串,会产生 n-1个中间结果,每产生一个中间结果都需要申请和复制一次内存,严重影响运行效率。而使用join()拼接字符串时,会首先计算出需要申请的总的内存空间,然后一次性地申请所需内存,并将每个字符串元素复制到该内存中去。
# 推荐写法,代码耗时:0.3秒
import string
from typing import List
def concatString(string_list: List[str]) -> str:
return ''.join(string_list) # 使用 join 而不是 +
def main():
string_list = list(string.ascii_letters * 100)
for _ in range(10000):
result = concatString(string_list)
main()
5.利用 if 条件的短路特性
# 不推荐写法,代码耗时:0.05秒
from typing import List
def concatString(string_list: List[str]) -> str:
abbreviations = {'cf.', 'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}
abbr_count = 0
result = ''
for str_i in string_list:
if str_i in abbreviations:
result += str_i
return result
def main():
for _ in range(10000):
string_list = ['Mr.', 'Hat', 'is', 'Chasing', 'the', 'black', 'cat', '.']
result = concatString(string_list)
main()
if 条件的短路特性是指对if a and b这样的语句, 当a为False时将直接返回,不再计算b;对于if a or b这样的语句,当a为True时将直接返回,不再计算b。因此, 为了节约运行时间,对于or语句,应该将值为True可能性比较高的变量写在or前,而and应该推后。
# 推荐写法,代码耗时:0.03秒
from typing import List
def concatString(string_list: List[str]) -> str:
abbreviations = {'cf.', 'e.g.', 'ex.', 'etc.', 'flg.', 'i.e.', 'Mr.', 'vs.'}
abbr_count = 0
result = ''
for str_i in string_list:
if str_i[-1] == '.' and str_i in abbreviations: # 利用 if 条件的短路特性
result += str_i
return result
def main():
for _ in range(10000):
string_list = ['Mr.', 'Hat', 'is', 'Chasing', 'the', 'black', 'cat', '.']
result = concatString(string_list)
main()
6.循环优化
6.1 用for循环代替while循环
# 不推荐写法。代码耗时:6.7秒
def computeSum(size: int) -> int:
sum_ = 0
i = 0
while i < size:
sum_ += i
i += 1
return sum_
def main():
size = 10000
for _ in range(size):
sum_ = computeSum(size)
main()
Python 的for循环比while循环快不少。
# 推荐写法。代码耗时:4.3秒
def computeSum(size: int) -> int:
sum_ = 0
for i in range(size): # for 循环代替 while 循环
sum_ += i
return sum_
def main():
size = 10000
for _ in range(size):
sum_ = computeSum(size)
main()
6.2 使用隐式for循环代替显式for循环
针对上面的例子,更进一步可以用隐式for循环来替代显式for循环
# 推荐写法。代码耗时:1.7秒
def computeSum(size: int) -> int:
return sum(range(size)) # 隐式 for 循环代替显式 for 循环
def main():
size = 10000
for _ in range(size):
sum = computeSum(size)
main()
6.3 减少内层for循环的计算
# 不推荐写法。代码耗时:12.8秒
import math
def main():
size = 10000
sqrt = math.sqrt
for x in range(size):
for y in range(size):
z = sqrt(x) + sqrt(y)
main()
上面的代码中sqrt(x)
位于内侧for循环, 每次训练过程中都会重新计算一次,增加了时间开销。
# 推荐写法。代码耗时:7.0秒
import math
def main():
size = 10000
sqrt = math.sqrt
for x in range(size):
sqrt_x = sqrt(x) # 减少内层 for 循环的计算
for y in range(size):
z = sqrt_x + sqrt(y)
main()
7.使用 numba.jit
我们沿用上面介绍过的例子,在此基础上使用numba.jit
。numba可以将 Python 函数 JIT 编译为机器码执行,大大提高代码运行速度。
# 推荐写法。代码耗时:0.62秒
import numba
@numba.jit
def computeSum(size: float) -> int:
sum = 0
for i in range(size):
sum += i
return sum
def main():
size = 10000
for _ in range(size):
sum = computeSum(size)
main()
8.选择合适的数据结构
Python 内置的数据结构如str
, tuple
, list
, set, dict底层都是 C 实现的,速度非常快,自己实现新的数据结构想在性能上达到内置的速度几乎是不可能的。
list类似于 C++ 中的std::vector
,是一种动态数组。其会预分配一定内存空间,当预分配的内存空间用完,又继续向其中添加元素时,会申请一块更大的内存空间,然后将原有的所有元素都复制过去,之后销毁之前的内存空间,再插入新元素。删除元素时操作类似,当已使用内存空间比预分配内存空间的一半还少时,会另外申请一块小内存,做一次元素复制,之后销毁原有大内存空间。
因此,如果有频繁的新增、删除操作,新增、删除的元素数量又很多时,list的效率不高。此时,应该考虑使用collections.deque
。collections.deque
是双端队列,同时具备栈和队列的特性,能够在两端进行 O(1)复杂度的插入和删除操作。
list的查找操作也非常耗时。当需要在list频繁查找某些元素,或频繁有序访问这些元素时,可以使用bisect
维护list对象有序并在其中进行二分查找,提升查找的效率。
另外一个常见需求是查找极小值或极大值,此时可以使用heapq模块将list转化为一个堆,使得获取最小值的时间复杂度是O(1)。
来源:https://blog.csdn.net/lyc2016012170/article/details/123267677


猜你喜欢
- MySql授权用户权限如何设置首先:去 mysql 库中查看 root 用户的权限select * from user where user
- 概述:最近在赶毕业设计,遇到一个问题,爬虫模块我用PyQt5写了图形界面,为了将所有的输出信息都显示到图形界面上遇到了问题。先演示一下效果最
- 1.问题描述当我们在实用ElementUI组件完成项目的时候可能会遇到这样的需求,比如:新建一个活动,需要定义活动的时间范围;因此我们在新建
- 推荐算法在互联网行业的应用非常广泛,今日头条、美团点评等都有个性化推荐,推荐算法抽象来讲,是一种对于内容满意度的拟合函数,涉及到用户特征和内
- 引言从他人的错误中学习,通过本指南避免常见陷阱和坏习惯,提高你的 Go 编程技巧在 Go 语言中,就像在任何编程语言中一样,了解常见陷阱和坏
- 在 Go 里面的协程执行实际上默认是没有严格的先后顺序的。由于 Go 语言 GPM 模型的设计理念,真正执行实际工作的实际上是 GPM 中的
- 本文实例为大家分享了js实现购物网站放大镜功能的具体代码,供大家参考,具体内容如下首先看效果图:先是布局,左边一个小图框,包含一个鼠标移动框
- 在Python中需要通过正则表达式对字符串进⾏匹配的时候,可以使⽤⼀个python自带的模块,名字为re。正则表达式的大致匹配过程是:1.依
- python共有两种浅拷贝的方法,一个是python的内置函数copy(),另一个是copy模块中的copy.copy()。python的六
- 码农在囧途最近这段时间来经历了太多东西,无论是个人的压力还是个人和团队失误所带来的损失,都太多,被骂了很多,也被检讨,甚至一些不方便说的东西
- 0.前言回调函数是一种在编程中常见的技术,通常在异步编程中使用。简单来说,回调函数是一个被传递给另一个函数的函数,它在该函数的某个时间点被调
- Mysqli是php5之后才有的功能,没有开启扩展的朋友可以打开您的php.ini的配置文件。 查找下面的语句:;extension=php
- 接下来我利用一点空余时间发一个函数里面包含和添加和删除功能。实验的架构可以使用IIS.5WEB服务器ACCESS数据库。这个我其实不用说的很
- 请先看看以下演示中的图案文字。这可不是图片效果,而是用CSS滤镜中的Chroma() 语句做成的文本文
- gojson是快速解析json数据的一个golang包,你使用它可以快速的查找json内的数据安装 go get github.com/wi
- Vue项目遇到要表单验证了吧,对我来说表单验证是个很纠(dan)结(teng)的内容,各种判断凌乱到飞起。往常使用jquery的valida
- 代码很简单,只需要2行代码就可实现想要的功能,虽然很短,但确实使用,主要使用了requests库。测试2XX, 3XX, 4XX, 5XX都
- JavaScript就其本质是函数式编程语言,是Lisp的后代,同时又加入了一下面向对象编程的元素,放弃了一些难懂的函数式语言的元素。 函数
- 传统行业里,缺做互联网资深的人;互联网行业里,缺玩传统业务资深的人。于是会造成很多问题,比如两边难沟通,在传统行业者心目中,网络营销e-Ma
- python怎么模拟点击网页按钮前提环境: Python3 和 Visual Studio Code安装完毕安装selenium : 在终端