pandas删除部分数据后重新生成索引的实现
作者:xiaotuwai8 发布时间:2023-11-18 04:44:13
pandas删除部分数据后重新索引
在使用pandas时,由于隔行读取删除了部分数据,导致删除数据后的索引不连续:
原数据
删除部分数据后
在绑定pyqt的tableview时需进行格式化,结果出现报错:
主要原因是索引值不连续,所以无法格式化,需对删除数据后的数据集进行重新索引,在格式化数据集之前加一句代码:
new_biao = biao.reset_index(drop=True)
顺利通过了编码并显示到tableview,问题解决。
附件:网上查到的格式化用的编码
class PandasModel(QtCore.QAbstractTableModel):
"""
Class to populate a table view with a pandas dataframe
"""
def __init__(self, data, parent=None):
QtCore.QAbstractTableModel.__init__(self, parent)
self._data = data
def rowCount(self, parent=None):
return len(self._data.values)
def columnCount(self, parent=None):
return self._data.columns.size
def data(self, index, role=QtCore.Qt.DisplayRole):
if index.isValid():
if role == QtCore.Qt.DisplayRole:
return str(self._data.values[index.row()][index.column()])
return None
def headerData(self, col, orientation, role):
if orientation == QtCore.Qt.Horizontal and role == QtCore.Qt.DisplayRole:
return self._data.columns[col]
return None
使用:
model = PandasModel(your_pandas_data_frame)
your_tableview.setModel(model)
pandas常用的index索引设置
1.读取时指定索引列
很多情况下,我们的数据源是 CSV 文件。假设有一个名为的文件data.csv,包含以下数据。
date,temperature,humidity
07/01/21,95,50
07/02/21,94,55
07/03/21,94,56
默认情况下,pandas将会创建一个从0开始的索引行,如下:
>>> pd.read_csv("data.csv", parse_dates=["date"])
date temperature humidity
0 2021-07-01 95 50
1 2021-07-02 94 55
2 2021-07-03 94 56
但是,我们可以在导入过程中通过将index_col参数设置为某一列可以直接指定索引列。
>>> pd.read_csv("data.csv", parse_dates=["date"], index_col="date")
temperature humidity
date
2021-07-01 95 50
2021-07-02 94 55
2021-07-03 94 56
2. 使用现有的 DataFrame 设置索引
当然,如果已经读取数据或做完一些数据处理步骤后,我们可以通过set_index手动设置索引。
>>> df = pd.read_csv("data.csv", parse_dates=["date"])
>>> df.set_index("date")
temperature humidity
date
2021-07-01 95 50
2021-07-02 94 55
2021-07-03 94 56
这里有两点需要注意下。
1.set_index方法默认将创建一个新的 DataFrame。如果要就地更改df的索引,需要设置inplace=True。
df.set_index(“date”, inplace=True)
2.如果要保留将要被设置为索引的列,可以设置drop=False。
df.set_index(“date”, drop=False)
3. 一些操作后重置索引
在处理 DataFrame 时,某些操作(例如删除行、索引选择等)将会生成原始索引的子集,这样默认的数字索引排序就乱了。如要重新生成连续索引,可以使用reset_index方法。
>>> df0 = pd.DataFrame(np.random.rand(5, 3), columns=list("ABC"))
>>> df0
A B C
0 0.548012 0.288583 0.734276
1 0.342895 0.207917 0.995485
2 0.378794 0.160913 0.971951
3 0.039738 0.008414 0.226510
4 0.581093 0.750331 0.133022
>>> df1 = df0[df0.index % 2 == 0]
>>> df1
A B C
0 0.548012 0.288583 0.734276
2 0.378794 0.160913 0.971951
4 0.581093 0.750331 0.133022
>>> df1.reset_index(drop=True)
A B C
0 0.548012 0.288583 0.734276
1 0.378794 0.160913 0.971951
2 0.581093 0.750331 0.133022
通常,我们是不需要保留旧索引的,因此可将drop参数设置为True。同样,如果要就地重置索引,可设置inplace参数为True,否则将创建一个新的 DataFrame。
4. 将索引从 groupby 操作转换为列
groupby分组方法是经常用的。比如下面通过添加一个分组列team来进行分组。
>>> df0["team"] = ["X", "X", "Y", "Y", "Y"]
>>> df0
A B C team
0 0.548012 0.288583 0.734276 X
1 0.342895 0.207917 0.995485 X
2 0.378794 0.160913 0.971951 Y
3 0.039738 0.008414 0.226510 Y
4 0.581093 0.750331 0.133022 Y
>>> df0.groupby("team").mean()
A B C
team
X 0.445453 0.248250 0.864881
Y 0.333208 0.306553 0.443828
默认情况下,分组会将分组列编程index索引。但是很多情况下,我们不希望分组列变成索引,因为可能有些计算或者判断逻辑还是需要用到该列的。因此,我们需要设置一下让分组列不成为索引,同时也能完成分组的功能。
有两种方法可以完成所需的操作,第一种是用reset_index,第二种是在groupby方法里设置as_index=False。个人更喜欢第二种方法,它只涉及两个步骤,更简洁。
>>> df0.groupby("team").mean().reset_index()
team A B C
0 X 0.445453 0.248250 0.864881
1 Y 0.333208 0.306553 0.443828
>>> df0.groupby("team", as_index=False).mean()
team A B C
0 X 0.445453 0.248250 0.864881
1 Y 0.333208 0.306553 0.443828
5.排序后重置索引
当用sort_value排序方法时也会遇到这个问题,因为默认情况下,索引index跟着排序顺序而变动,所以是乱雪。如果我们希望索引不跟着排序变动,同样需要在sort_values方法中设置一下参数ignore_index即可。
>>> df0.sort_values("A")
A B C team
3 0.039738 0.008414 0.226510 Y
1 0.342895 0.207917 0.995485 X
2 0.378794 0.160913 0.971951 Y
0 0.548012 0.288583 0.734276 X
4 0.581093 0.750331 0.133022 Y
>>> df0.sort_values("A", ignore_index=True)
A B C team
0 0.039738 0.008414 0.226510 Y
1 0.342895 0.207917 0.995485 X
2 0.378794 0.160913 0.971951 Y
3 0.548012 0.288583 0.734276 X
4 0.581093 0.750331 0.133022 Y
6.删除重复后重置索引
删除重复项和排序一样,默认执行后也会打乱排序顺序。同理,可以在drop_duplicates方法中设置ignore_index参数True即可。
>>> df0
A B C team
0 0.548012 0.288583 0.734276 X
1 0.342895 0.207917 0.995485 X
2 0.378794 0.160913 0.971951 Y
3 0.039738 0.008414 0.226510 Y
4 0.581093 0.750331 0.133022 Y
>>> df0.drop_duplicates("team", ignore_index=True)
A B C team
0 0.548012 0.288583 0.734276 X
1 0.378794 0.160913 0.971951 Y
7. 索引的直接赋值
当我们有了一个 DataFrame 时,想要使用不同的数据源或单独的操作来分配索引。在这种情况下,可以直接将索引分配给现有的 df.index。
>>> better_index = ["X1", "X2", "Y1", "Y2", "Y3"]
>>> df0.index = better_index
>>> df0
A B C team
X1 0.548012 0.288583 0.734276 X
X2 0.342895 0.207917 0.995485 X
Y1 0.378794 0.160913 0.971951 Y
Y2 0.039738 0.008414 0.226510 Y
Y3 0.581093 0.750331 0.133022 Y
8.写入CSV文件时忽略索引
数据导出到 CSV 文件时,默认 DataFrame 具有从 0 开始的索引。如果我们不想在导出的 CSV 文件中包含它,可以在to_csv方法中设置index参数。
>>> df0.to_csv("exported_file.csv", index=False)
如下所示,导出的 CSV 文件中,索引列未包含在文件中。
其实,很多方法中都有关于索引的设置,只不过大家一般比较关心数据,而经常忽略了索引,才导致继续运行时可能会报错。以上几个高频的操作都是有索引设置的,建议大家平时用的时候养成设置索引的习惯,这样会节省不少时间。
来源:https://blog.csdn.net/xiaotuwai8/article/details/104322355
猜你喜欢
- 作用域链首先来看看这段代码:var a = '喜羊羊';function A(){ console
- 首先创建scrapy项目命令:scrapy startproject douban_read创建spider命令:scrapy genspi
- 定时器1-"*/5 * * * * *"package mainimport ("fmt""
- 前言读取站点资料数据对站点数据进行插值,插值到规则网格上绘制EOF第一模态和第二模态的空间分布图绘制PC序列关于插值,这里主要提供了两个插值
- 在用 Javascript 验证表单(form)中的单选框(radio)是否选中时,很多新手都会遇到问题,原因是 radio 和普通的文本框
- 对网站的LOGO设计做了一些归纳,希望得到批评,发现写的太长了,又不忍心删减,就分成两部分了,第一部分是有关设计基础的。第二部分是关于网站L
- 网页采用了 UTF-8 编码格式,这本来没有问题,问题是外部 CSS 文件默认是 ANSI
- 判断类型在Python中我们可以使用type进行类型的判断#我们想看一个对象的的类型可以这样class A: passa = A
- 1000块钱做个百度?能提出这种要求的客户实乃乙方克星、民族之光、科创永动机、西虹市一大杰出青年,诺奖永远得不到的人才。但作为一个硬核的程序
- 这篇文章主要介绍了简单了解Python3 bytes和str类型的区别和联系,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的
- 修改python plot折线图的坐标轴刻度,这里修改为整数:代码如下:from matplotlib import pyplot as p
- ConfigParser模块在python中用来读取配置文件,配置文件的格式跟windows下的ini配置文件相似,可以包含一个或多个节(s
- 实例如下所示:# -*- coding: utf-8 -*-"""使用通配符,获取所有文件,或进行操作。&qu
- 作者:敖士伟 Email:ikmb@163.com 转载注明作者 说明: 1、js根据表单元素class属性,把表单元素的name和valu
- 本人非计算机,亦非心理学,或者交互设计,更非设计专业出身,因此什么都是半桶水。即使如此,依然靠着兴趣寻找乐趣。对于设计,爱之,但没有受过系统
- 本文实例讲述了Python实现判断一个整数是否为回文数算法。分享给大家供大家参考,具体如下:第一个思路是先将整数转换为字符串,再将字符串翻转
- 一、前言1.1 关于描述性统计分析概括地来说,描述性统计分析就是在收集到的数据的基础上,运用制表和分类,图形以及计算概括性数据来描述数据特征
- 如何在页面中实现对电子信箱的访问?emaile.htm<HTML><HEAD><META NAME=
- setup语法糖 最大好处就是所有声明部分皆可直接使用,无需return出去注意:部分功能还不完善,如:name、render还需
- 上下文管理器是一种 Python 构造,它提供了一个类似 try-finally 的环境,具有一致的接口和方便的语法,例如通过&ld