Python连接Hadoop数据中遇到的各种坑(汇总)
作者:wx0628 发布时间:2023-09-13 20:16:34
最近准备使用Python+Hadoop+Pandas进行一些深度的分析与机器学习相关工作。(当然随着学习过程的进展,现在准备使用Python+Spark+Hadoop这样一套体系来搭建后续的工作环境),当然这是后话。
但是这项工作首要条件就是将Python与Hadoop进行打通,本来认为很容易的一项工作,没有想到竟然遇到各种坑,花费了整整半天时间。后来也在网上看到大家在咨询相同的问题,但是真正解决这个问题的帖子又几乎没有,所以现在将Python连接Hadoop数据库过程中遇到的各种坑进行一个汇总,然后与大家进行分享,以尽量避免大家花费宝贵的时间。
(说明一下:这篇文章中的各种坑的解决,翻阅了网上无数的帖子,最好一GIT上面一个帖子的角落里面带了这么一句,否则很容易翻船。但是由于帖子太多,所以我就不一一帖出来了)
首先是选组件,我选择的是使用:impala+Python3.7来连接Hadoop数据库,如果你不是的话,就不要浪费宝贵时间继续阅读了。
执行的代码如下:
import impala.dbapi as ipdb
conn = ipdb.connect(host="192.168.XX.XXX",port=10000,user="xxx",password="xxxxxx",database="xxx",auth_mechanism='PLAIN')
cursor = conn.cursor()
#其中xxxx是表名,为了不涉及到公司的信息,我把表名隐藏掉了,大家自己换成自己数据库表名
cursor.execute('select * From xxxx')
print(cursor.description) # prints the result set's schema
for rowData in cursor.fetchall():
print(rowData)
conn.close()
坑一:提示语法错误
现象:
/Users/wangxxin/miniconda3/bin/python3.7 /Users/wangxxin/Documents/Python/PythonDataAnalyze/project/knDt/pyHiveTest.py
Traceback (most recent call last):
File "/Users/wangxxin/Documents/Python/PythonDataAnalyze/project/knDt/pyHiveTest.py", line 1, in <module>
import impala.dbapi as ipdb
File "/Users/wangxxin/miniconda3/lib/python3.7/site-packages/impala/dbapi.py", line 28, in <module>
import impala.hiveserver2 as hs2
File "/Users/wangxxin/miniconda3/lib/python3.7/site-packages/impala/hiveserver2.py", line 340
async=True)
解决办法:将参数async全部修改为“async_”(当然这个可以随便,只要上下文一致,并且不是关键字即可),原因:在Python3.0中,已经将async标为关键词,如果再使用async做为参数,会提示语法错误;应该包括以下几个地方:
#hiveserver2.py文件338行左右
op = self.session.execute(self._last_operation_string,
configuration,
async_=True)
#hiveserver2.py文件1022行左右
def execute(self, statement, configuration=None, async_=False):
req = TExecuteStatementReq(sessionHandle=self.handle,
statement=statement,
confOverlay=configuration,
runAsync=async_)
坑二:提供的Parser.py文件有问题,加载的时候会报错
解决办法:
#根据网上的意见对原代码进行调整
elif url_scheme in ('c', 'd', 'e', 'f'):
with open(path) as fh:
data = fh.read()
elif url_scheme in ('http', 'https'):
data = urlopen(path).read()
else:
raise ThriftParserError('ThriftPy does not support generating module '
'with path in protocol \'{}\''.format(
url_scheme))
以上的坑一、坑二建议你直接修改。这两点是肯定要调整的;
坑三:上面的两个问题处理好之后,继续运行,会报如下错误:
TProtocolException: TProtocolException(type=4)
解决办法:
原因是由于connect方法里面没有增加参数:auth_mechanism='PLAIN,修改如下所示:
import impala.dbapi as ipdb
conn = ipdb.connect(host="192.168.XX.XXX",port=10000,user="xxx",password="xxxxxx",database="xxx",auth_mechanism='PLAIN')`
坑四:问题三修改好之后,继续运行程序,你会发现继续报错:
AttributeError: 'TSocket' object has no attribute 'isOpen'
解决办法:
由于是thrift-sasl的版本太高了(0.3.0),故将thrift-sasl的版本降级到0.2.1
pip uninstall thrift-sasl
pip install thrift-sasl==0.2.1
坑五:处理完这个问题后,继续运行,继续报错(这个时间解决有点快崩溃的节奏了,但是请坚持住,其实你已经很快接近最后结果了):
thriftpy.transport.TTransportException: TTransportException(type=1, message="Could not start SASL: b'Error in sasl_client_start (-4) SASL(-4): no mechanism available: Unable to find a callback: 2'")
解决办法:这个是最麻烦的,也是目前最难找到解决办法的。
I solved the issue, had to uninstall the package SASL and install PURE-SASL, when impyla can´t find the sasl package it works with pure-sasl and then everything goes well.
主要原因其实还是因为sasl和pure-sasl有冲突,这种情况下,直接卸载sasl包就可能了。
pip uninstall SASL
坑六:但是执行完成,继续完成,可能还是会报错:
TypeError: can't concat str to bytes
定位到错误的最后一条,在init.py第94行(标黄的部分)
header = struct.pack(">BI", status, len(body))
#按照网上的提供的办法增加对BODY的处理
if (type(body) is str):
body = body.encode()
self._trans.write(header + body)
self._trans.flush()
经过以上步骤,大家应该可以连接Hive库查询数据,应该是不存在什么问题了。
最后总结一下,连接Hadoop数据库中各种依赖包,请大家仔细核对一下依赖包(最好是依赖包相同,也就是不多不少[我说的是相关的包],这样真的可以避免很多问题的出现)
序号 | 包名 | 版本号 | 安装命令行 |
---|---|---|---|
1 | pure_sasl | 0.5.1 | pip install pure_sasl==0.5.1 -i https://pypi.tuna.tsinghua.edu.cn/simple |
2 | thrift | 0.9.3 | pip install thrift==0.9.3 -i https://pypi.tuna.tsinghua.edu.cn/simple |
3 | bitarray | 0.8.3 | pip install bitarray==0.8.3 -i https://pypi.tuna.tsinghua.edu.cn/simple |
4 | thrift_sasl | 0.2.1 | pip install thrift_sasl==0.2.1 -i https://pypi.tuna.tsinghua.edu.cn/simple |
5 | thriftpy | 0.3.9 | pip install thriftpy==0.3.9 -i https://pypi.tuna.tsinghua.edu.cn/simple |
6 | impyla | 0.14.1 | pip install impyla==0.14.1 -i https://pypi.tuna.tsinghua.edu.cn/simple |
建议按顺序安装,我这边之前有依赖包的问题,但是最终我是通过conda进行安装的。
其中在安装thriftpy、thrift_sasl、impyla报的时候报错,想到自己有conda,直接使用conda install,会自动下载依赖的包,如下所示(供没有conda环境的同学参考)
package | build | size |
---|---|---|
ply-3.11 | py37_0 | 80 KB |
conda-4.6.1 | py37_0 | 1.7 MB |
thriftpy-0.3.9 | py37h1de35cc_2 | 171 KB |
祝您好运!如果在实际过程中还是遇到各种各样的问题,请你留言。
最后有一点提示:
SQL里面不要带分号,否则会报错。但是这个就不是环境问题了。报错如下:
impala.error.HiveServer2Error: Error while compiling statement: FAILED: ParseException line 2:83 cannot recogniz
来源:https://blog.csdn.net/wx0628/article/details/86550582
猜你喜欢
- 前言由于总是出错,记录一下连接MySQL数据库的过程。连接过程1.下载MySQL并安装,这里的版本是8.0.182.下载MySQL的jdbc
- 本文实例讲述了PHP获取指定日期是星期几的实现方法。分享给大家供大家参考,具体如下:<?php header("
- Yolov5如何更换BiFPN?第一步:修改common.py将如下代码添加到common.py文件中# BiFPN # 两个特征图add操
- K线数据提取依据原有数据集格式,按要求生成新表:1、每分钟的close数据的第一条、最后一条、最大值及最小值,2、每分钟vol数据的增长量(
- 由于 window.onload 事件需要在页面所有内容(包括图片等)加载完后,才执行,但往往我们更希望在 DOM 一加载完就执行脚本。其实
- 目录各种姿势比较快的姿势最后各种姿势比如说有一个简单的任务,就是从 1 累加到 1 亿,我们至少可以有 7 种方法来实现,列举如下:1、wh
- 项目中使用mp3格式进行音效播放,遇到一个mp3文件在程序中死活播不出声音,最后发现它是wav格式的文件,却以mp3结尾。要对资源进行mp3
- 代码的作用在于保证在上端缓存服务失效(一般来说概率比较低)时,形成倒瓶颈,从而能够保护数据库,数据库宕了,才是大问题(比如影响其他应用)。假
- 目录1. 选择合适的数据结构2. 善用强大的内置函数和第三方库3. 少用循环4. 避免循环重复计算5. 少用内存、少用全局变量总结官方原文,
- 场景:集团中心下发本省数据时,并未按地市、业务拆分,现需要按地市、业务拆分并分发到地市。本文利用Python的pandas包实现了以上场景。
- 【背景】 最近学习碰到了一件挺令人尴尬的事情,我把MySQL的密码给忘记了,所以
- 在select语句中可以使用groupby子句将行划分成较小的组,然后,使用聚组函数返回每一个组的汇总信息,另外,可以使用having子句限
- 我们主要讲解一下利用Python实现感知机算法。算法一首选,我们利用Python,按照上一节介绍的感知机算法基本思想,实现感知算法的原始形式
- 1.使用场景定时执行jmeter脚本,通过python定时器隔一段时间执行命令行命令。2.库os、datetime、threading(1)
- 测试环境为Windows 10 系统,Python3.7,转换需要提前安装pydub、ffmpeg,安装和加入环境变量配置方法自行解决,至于
- 1、建表语句:CREATE TABLE `employees` ( `emp_no` int(11) NOT NULL, `birth_da
- router 动态路由清除重置matcher可达到路由还原效果在用户退出时调用 resetRouter(router) 即可还原路由impo
- InnoDB和MyISAM是在使用MySQL最常用的两个表类型,各有优缺点,视具体应用而定。下面是已知的两者之间的差别,仅供参考。1.Inn
- mock.js简介官方链接:Mock.js (mockjs.com)前端开发人员用来模拟虚拟数据,拦截ajax请求,方便模拟后端接口安装np
- 前言本文主要给大家介绍了关于python中用Future对象回调别的函数的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的