Python下opencv图像阈值处理的使用笔记
作者:on2way 发布时间:2023-08-24 21:28:27
图像的阈值处理一般使得图像的像素值更单一、图像更简单。阈值可以分为全局性质的阈值,也可以分为局部性质的阈值,可以是单阈值的也可以是多阈值的。当然阈值越多是越复杂的。下面将介绍opencv下的三种阈值方法。
(一)简单阈值
简单阈值当然是最简单,选取一个全局阈值,然后就把整幅图像分成了非黑即白的二值图像了。函数为cv2.threshold()
这个函数有四个参数,第一个原图像,第二个进行分类的阈值,第三个是高于(低于)阈值时赋予的新值,第四个是一个方法选择参数,常用的有:
cv2.THRESH_BINARY(黑白二值)
cv2.THRESH_BINARY_INV(黑白二值反转)
cv2.THRESH_TRUNC (得到的图像为多像素值)
cv2.THRESH_TOZERO
cv2.THRESH_TOZERO_INV
该函数有两个返回值,第一个retVal(得到的阈值值(在后面一个方法中会用到)),第二个就是阈值化后的图像。
一个实例如下:
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('flower.jpg',0) #直接读为灰度图像
ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)
titles = ['img','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images = [img,thresh1,thresh2,thresh3,thresh4,thresh5]
for i in range(6):
plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i])
plt.xticks([]),plt.yticks([])
plt.show()
可以看到这里把阈值设置成了127,对于BINARY方法,当图像中的灰度值大于127的重置像素值为255.
(二)自适应阈值:
前面看到简单阈值是一种全局性的阈值,只需要规定一个阈值值,整个图像都和这个阈值比较。而自适应阈值可以看成一种局部性的阈值,通过规定一个区域大小,比较这个点与区域大小里面像素点的平均值(或者其他特征)的大小关系确定这个像素点是属于黑或者白(如果是二值情况)。使用的函数为:cv2.adaptiveThreshold()
该函数需要填6个参数:
第一个原始图像
第二个像素值上限
第三个自适应方法Adaptive Method:
— cv2.ADAPTIVE_THRESH_MEAN_C :领域内均值
—cv2.ADAPTIVE_THRESH_GAUSSIAN_C :领域内像素点加权和,权 重为一个高斯窗口
第四个值的赋值方法:只有cv2.THRESH_BINARY 和cv2.THRESH_BINARY_INV
第五个Block size:规定领域大小(一个正方形的领域)
第六个常数C,阈值等于均值或者加权值减去这个常数(为0相当于阈值 就是求得领域内均值或者加权值)
这种方法理论上得到的效果更好,相当于在动态自适应的调整属于自己像素点的阈值,而不是整幅图像都用一个阈值。
一个实例如下:
mport cv2
import matplotlib.pyplot as plt
img = cv2.imread('flower.jpg',0) #直接读为灰度图像
ret,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
th2 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY,11,2) #换行符号 \
th3 = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY,11,2) #换行符号 \
images = [img,th1,th2,th3]
plt.figure()
for i in xrange(4):
plt.subplot(2,2,i+1),plt.imshow(images[i],'gray')
plt.show()
可以看到上述窗口大小使用的为11,当窗口越小的时候,得到的图像越细。想想一下,如果把窗口设置足够大以后(不能超过图像大小),那么得到的结果可能就和第二幅图像的相同了。
(三)Otsu's二值化
我们前面说到,cv2.threshold函数是有两个返回值的,前面一直用的第二个返回值,也就是阈值处理后的图像,那么第一个返回值(得到图像的阈值)将会在这里用到。
前面对于阈值的处理上,我们选择的阈值都是127,那么实际情况下,怎么去选择这个127呢?有的图像可能阈值不是127得到的效果更好。那么这里我们需要算法自己去寻找到一个阈值,而Otsu's就可以自己找到一个认为最好的阈值。并且Otsu's非常适合于图像灰度直方图具有双峰的情况,他会在双峰之间找到一个值作为阈值,对于非双峰图像,可能并不是很好用。那么经过Otsu's得到的那个阈值就是函数cv2.threshold的第一个参数了。因为Otsu's方法会产生一个阈值,那么函数cv2.threshold的的第二个参数(设置阈值)就是0了,并且在cv2.threshold的方法参数中还得加上语句cv2.THRESH_OTSU。那么什么是双峰图像(只能是灰度图像才有),就是图像的灰度统计图中可以明显看出只有两个波峰,比如下面一个图的灰度直方图就可以是双峰图:
好了现在对这个图进行Otsu's阈值处理就非常的好,通过函数cv2.threshold会自动找到一个介于两波峰之间的阈值。一个实例如下:
import cv2
import matplotlib.pyplot as plt
img = cv2.imread('finger.jpg',0) #直接读为灰度图像
#简单滤波
ret1,th1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
#Otsu 滤波
ret2,th2 = cv2.threshold(img,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
print ret2
plt.figure()
plt.subplot(221),plt.imshow(img,'gray')
plt.subplot(222),plt.hist(img.ravel(),256)#.ravel方法将矩阵转化为一维
plt.subplot(223),plt.imshow(th1,'gray')
plt.subplot(224),plt.imshow(th2,'gray')
print ret2 得到的结果为122。可以看出似乎两个结果并没有很明显差别(素材也不太好弄~_~!),主要是两个阈值(127与122)太相近了,如果这两个隔得很远那么会很明显的。
来源:https://blog.csdn.net/on2way/article/details/46812121
猜你喜欢
- Python之Selenium(自动化浏览器测试)1.安装seleniumpip install selenium -i https://p
- 我完成了更新我们在 Neutron的实时收入统计。在我花了一周的时间完成并且更新了我们的PHP脚本之后,我最终认决定开始使用Py
- 绘制直线图,确定x范围和y的范围代码:import matplotlib.pyplot as pltimport numpy as npxp
- 一、前言确保安装scikit-imagenumpy二、Dataset一个例子:# 导入需要的包import torchimport torc
- [sql] --1.将每个老师的工资更新为原来的工资+奖金 --定义两个变量,用来存储ttid与reward declare @tid in
- 1. mean() 函数定义:numpy.mean(a, axis=None, dtype=None, out=None, keepdims
- 本文利用 MySQL的扩展功能 REPLACE INTO 来生成全局id,REPLACE INTO和INSERT的功能一样,但是当使用REP
- 大名鼎鼎的FCKeditor终于在最近发布新版本了,与增加版本号不同,这次完全把它改名了,更名为CKeditor。这应该是和它的开发公司CK
- 本文介绍了深入理解ES6的迭代器与生成器,分享给大家,具体如下:循环语句的问题var colors = ["red",
- 在数据库开发过程中,当你检索的数据只是一条记录时,你所编写的事务语句代码往往使用SELECT INSERT 语句。但是我们常常会遇到这样情况
- 人生苦短,我选Python。Python比其他的语言来说真的简洁多了,很多时候想做的东西都有对应的模块可以导入,平时玩点小东西真心不错。首先
- 在讲CSS优先级之前,我们得要了解什么是CSS,CSS是用来做什么的。首先,我们对CSS作一个简单的说明:CSS是层叠样式表(Cascadi
- 基于 Mysql 实现一个搜索引擎前言:其实 Mysql 很早就支持全文索引了,只不过一直只支持英文的检索,从5.7.6 版本开始,Mysq
- 测试配置文件test.conf内容如下:[first]w = 2v: 3c =11-3[second]sw=4test: hello测试配置
- 本文总结了asp初学者在学习asp过程中可能会碰到的常见问题,并做了详细的解答。1.如何用Asp判断你的网站的虚拟物理路径 答:使用Mapp
- bug1无法正常使用cmd或pycharm正常安装,报错截图如下:解决(1): 这种情况下,我们就不能使用cmd或pycharm进
- 事务处理在各种管理系统中都有着广泛的应用,比如人员管理系统,很多同步数据库操作大都需要用到事务处理。比如说,在人员管理系统中,你删除一个人员
- 实际项目中遇到python模块相互引用问题,查资料,终于算是弄明白了。首先交叉引用或是相互引用,实际上就是导入循环,关于导入循环的详细说明,
- MySQL数据库配置技巧用root用户启动远程服务一直是安全大忌,因为如果服务程序出现问题,远程攻击者极有可能获得主机的完全控制权。MySQ
- My Sql 大部分都是用绿色版(解压版) 然后注册服务 简单方便。但是。配置文件头痛的一逼。首先配置mysql的环境变量。mySQL 环境