网络编程
位置:首页>> 网络编程>> Python编程>> Python实现机器学习算法的分类

Python实现机器学习算法的分类

作者:白衫岁寒如水  发布时间:2023-08-31 05:50:36 

标签:Python,算法,机器学习

Python算法的分类

对葡萄酒数据集进行测试,由于数据集是多分类且数据的样本分布不平衡,所以直接对数据测试,效果不理想。所以使用SMOTE过采样对数据进行处理,对数据去重,去空,处理后数据达到均衡,然后进行测试,与之前测试相比,准确率提升较高。

Python实现机器学习算法的分类

例如:决策树:

Smote处理前:

Python实现机器学习算法的分类

Smote处理后:

Python实现机器学习算法的分类


from typing import Counter
from matplotlib import colors, markers
import numpy as np
import pandas as pd
import operator
import matplotlib.pyplot as plt
from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.ensemble import AdaBoostClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.svm import SVC
# 判断模型预测准确率的模型
from sklearn.metrics import accuracy_score
from sklearn.metrics import roc_auc_score
from sklearn.metrics import f1_score
from sklearn.metrics import classification_report

#设置绘图内的文字
plt.rcParams['font.family'] = ['sans-serif']
plt.rcParams['font.sans-serif'] = ['SimHei']

path ="C:\\Users\\zt\\Desktop\\winequality\\myexcel.xls"
# path=r"C:\\Users\\zt\\Desktop\\winequality\\winequality-red.csv"#您要读取的文件路径
# exceldata = np.loadtxt(
#     path,
#     dtype=str,
#     delimiter=";",#每列数据的隔开标志
#     skiprows=1
# )

# print(Counter(exceldata[:,-1]))

exceldata = pd.read_excel(path)
print(exceldata)

print(exceldata[exceldata.duplicated()])
print(exceldata.duplicated().sum())

#去重
exceldata = exceldata.drop_duplicates()

#判空去空
print(exceldata.isnull())
print(exceldata.isnull().sum)
print(exceldata[~exceldata.isnull()])
exceldata = exceldata[~exceldata.isnull()]

print(Counter(exceldata["quality"]))

#smote

#使用imlbearn库中上采样方法中的SMOTE接口
from imblearn.over_sampling import SMOTE
#定义SMOTE模型,random_state相当于随机数种子的作用

X,y = np.split(exceldata,(11,),axis=1)
smo = SMOTE(random_state=10)

x_smo,y_smo = SMOTE().fit_resample(X.values,y.values)

print(Counter(y_smo))

x_smo = pd.DataFrame({"fixed acidity":x_smo[:,0], "volatile acidity":x_smo[:,1],"citric acid":x_smo[:,2] ,"residual sugar":x_smo[:,3] ,"chlorides":x_smo[:,4],"free sulfur dioxide":x_smo[:,5] ,"total sulfur dioxide":x_smo[:,6] ,"density":x_smo[:,7],"pH":x_smo[:,8] ,"sulphates":x_smo[:,9] ," alcohol":x_smo[:,10]})
y_smo = pd.DataFrame({"quality":y_smo})
print(x_smo.shape)
print(y_smo.shape)
#合并
exceldata = pd.concat([x_smo,y_smo],axis=1)
print(exceldata)

#分割X,y
X,y = np.split(exceldata,(11,),axis=1)
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=10,train_size=0.7)
print("训练集大小:%d"%(X_train.shape[0]))
print("测试集大小:%d"%(X_test.shape[0]))

def func_mlp(X_train,X_test,y_train,y_test):
   print("神经网络MLP:")
   kk = [i for i in range(200,500,50) ] #迭代次数
   t_precision = []
   t_recall = []
   t_accuracy = []
   t_f1_score = []
   for n in kk:
       method = MLPClassifier(activation="tanh",solver='lbfgs', alpha=1e-5,
                   hidden_layer_sizes=(5, 2), random_state=1,max_iter=n)
       method.fit(X_train,y_train)
       MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9,
                       beta_2=0.999, early_stopping=False, epsilon=1e-08,
                       hidden_layer_sizes=(5, 2), learning_rate='constant',
                       learning_rate_init=0.001, max_iter=n, momentum=0.9,
                       nesterovs_momentum=True, power_t=0.5, random_state=1, shuffle=True,
                       solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False,
                       warm_start=False)
       y_predict = method.predict(X_test)
       t =classification_report(y_test, y_predict, target_names=['3','4','5','6','7','8'],output_dict=True)
       print(t)
       t_accuracy.append(t["accuracy"])
       t_precision.append(t["weighted avg"]["precision"])
       t_recall.append(t["weighted avg"]["recall"])
       t_f1_score.append(t["weighted avg"]["f1-score"])
   plt.figure("数据未处理MLP")
   plt.subplot(2,2,1)
   #添加文本 #x轴文本
   plt.xlabel('迭代次数')
   #y轴文本
   plt.ylabel('accuracy')
   #标题
   plt.title('不同迭代次数下的accuracy')
   plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,2)
   #添加文本 #x轴文本
   plt.xlabel('迭代次数')
   #y轴文本
   plt.ylabel('precision')
   #标题
   plt.title('不同迭代次数下的precision')
   plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,3)
   #添加文本 #x轴文本
   plt.xlabel('迭代次数')
   #y轴文本
   plt.ylabel('recall')
   #标题
   plt.title('不同迭代次数下的recall')
   plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,4)
   #添加文本 #x轴文本
   plt.xlabel('迭代次数')
   #y轴文本
   plt.ylabel('f1_score')
   #标题
   plt.title('不同迭代次数下的f1_score')
   plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.show()

def func_svc(X_train,X_test,y_train,y_test):
   print("向量机:")
   kk = ["linear","poly","rbf"] #核函数类型
   t_precision = []
   t_recall = []
   t_accuracy = []
   t_f1_score = []
   for n in kk:
       method = SVC(kernel=n, random_state=0)
       method = method.fit(X_train, y_train)
       y_predic = method.predict(X_test)
       t =classification_report(y_test, y_predic, target_names=['3','4','5','6','7','8'],output_dict=True)
       print(t)
       t_accuracy.append(t["accuracy"])
       t_precision.append(t["weighted avg"]["precision"])
       t_recall.append(t["weighted avg"]["recall"])
       t_f1_score.append(t["weighted avg"]["f1-score"])
   plt.figure("数据未处理向量机")
   plt.subplot(2,2,1)
   #添加文本 #x轴文本
   plt.xlabel('核函数类型')
   #y轴文本
   plt.ylabel('accuracy')
   #标题
   plt.title('不同核函数类型下的accuracy')
   plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,2)
   #添加文本 #x轴文本
   plt.xlabel('核函数类型')
   #y轴文本
   plt.ylabel('precision')
   #标题
   plt.title('不同核函数类型下的precision')
   plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,3)
   #添加文本 #x轴文本
   plt.xlabel('核函数类型')
   #y轴文本
   plt.ylabel('recall')
   #标题
   plt.title('不同核函数类型下的recall')
   plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,4)
   #添加文本 #x轴文本
   plt.xlabel('核函数类型')
   #y轴文本
   plt.ylabel('f1_score')
   #标题
   plt.title('不同核函数类型下的f1_score')
   plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.show()

def func_classtree(X_train,X_test,y_train,y_test):
   print("决策树:")
   kk = [10,20,30,40,50,60,70,80,90,100] #决策树最大深度
   t_precision = []
   t_recall = []
   t_accuracy = []
   t_f1_score = []
   for n in kk:
       method = tree.DecisionTreeClassifier(criterion="gini",max_depth=n)
       method.fit(X_train,y_train)
       predic = method.predict(X_test)
       print("method.predict:%f"%method.score(X_test,y_test))

t =classification_report(y_test, predic, target_names=['3','4','5','6','7','8'],output_dict=True)
       print(t)
       t_accuracy.append(t["accuracy"])
       t_precision.append(t["weighted avg"]["precision"])
       t_recall.append(t["weighted avg"]["recall"])
       t_f1_score.append(t["weighted avg"]["f1-score"])
   plt.figure("数据未处理决策树")
   plt.subplot(2,2,1)
   #添加文本 #x轴文本
   plt.xlabel('决策树最大深度')
   #y轴文本
   plt.ylabel('accuracy')
   #标题
   plt.title('不同决策树最大深度下的accuracy')
   plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,2)
   #添加文本 #x轴文本
   plt.xlabel('决策树最大深度')
   #y轴文本
   plt.ylabel('precision')
   #标题
   plt.title('不同决策树最大深度下的precision')
   plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,3)
   #添加文本 #x轴文本
   plt.xlabel('决策树最大深度')
   #y轴文本
   plt.ylabel('recall')
   #标题
   plt.title('不同决策树最大深度下的recall')
   plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,4)
   #添加文本 #x轴文本
   plt.xlabel('决策树最大深度')
   #y轴文本
   plt.ylabel('f1_score')
   #标题
   plt.title('不同决策树最大深度下的f1_score')
   plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.show()

def func_adaboost(X_train,X_test,y_train,y_test):
   print("提升树:")
   kk = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8]
   t_precision = []
   t_recall = []
   t_accuracy = []
   t_f1_score = []
   for n in range(100,200,200):
       for k in kk:
           print("迭代次数为:%d\n学习率:%.2f"%(n,k))
           bdt = AdaBoostClassifier(tree.DecisionTreeClassifier(max_depth=2, min_samples_split=20),
                                   algorithm="SAMME",
                                   n_estimators=n, learning_rate=k)
           bdt.fit(X_train, y_train)
           #迭代100次 ,学习率为0.1
           y_pred = bdt.predict(X_test)
           print("训练集score:%lf"%(bdt.score(X_train,y_train)))
           print("测试集score:%lf"%(bdt.score(X_test,y_test)))
           print(bdt.feature_importances_)

t =classification_report(y_test, y_pred, target_names=['3','4','5','6','7','8'],output_dict=True)
           print(t)
           t_accuracy.append(t["accuracy"])
           t_precision.append(t["weighted avg"]["precision"])
           t_recall.append(t["weighted avg"]["recall"])
           t_f1_score.append(t["weighted avg"]["f1-score"])
   plt.figure("数据未处理迭代100次(adaboost)")
   plt.subplot(2,2,1)
   #添加文本 #x轴文本
   plt.xlabel('学习率')
   #y轴文本
   plt.ylabel('accuracy')
   #标题
   plt.title('不同学习率下的accuracy')
   plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,2)
   #添加文本 #x轴文本
   plt.xlabel('学习率')
   #y轴文本
   plt.ylabel('precision')
   #标题
   plt.title('不同学习率下的precision')
   plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,3)
   #添加文本 #x轴文本
   plt.xlabel('学习率')
   #y轴文本
   plt.ylabel('recall')
   #标题
   plt.title('不同学习率下的recall')
   plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,4)
   #添加文本 #x轴文本
   plt.xlabel('学习率')
   #y轴文本
   plt.ylabel('f1_score')
   #标题
   plt.title('不同学习率下的f1_score')
   plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.show()

# inX 用于分类的输入向量
# dataSet表示训练样本集
# 标签向量为labels,标签向量的元素数目和矩阵dataSet的行数相同
# 参数k表示选择最近邻居的数目
def classify0(inx, data_set, labels, k):
   """实现k近邻"""
   data_set_size = data_set.shape[0]   # 数据集个数,即行数
   diff_mat = np.tile(inx, (data_set_size, 1)) - data_set   # 各个属性特征做差
   sq_diff_mat = diff_mat**2  # 各个差值求平方
   sq_distances = sq_diff_mat.sum(axis=1)  # 按行求和
   distances = sq_distances**0.5   # 开方
   sorted_dist_indicies = distances.argsort()  # 按照从小到大排序,并输出相应的索引值
   class_count = {}  # 创建一个字典,存储k个距离中的不同标签的数量

for i in range(k):
       vote_label = labels[sorted_dist_indicies[i]]  # 求出第i个标签

# 访问字典中值为vote_label标签的数值再加1,
       #class_count.get(vote_label, 0)中的0表示当为查询到vote_label时的默认值
       class_count[vote_label[0]] = class_count.get(vote_label[0], 0) + 1
   # 将获取的k个近邻的标签类进行排序
   sorted_class_count = sorted(class_count.items(),
   key=operator.itemgetter(1), reverse=True)
   # 标签类最多的就是未知数据的类
   return sorted_class_count[0][0]

def func_knn(X_train,X_test,y_train,y_test):
   print("k近邻:")
   kk = [i for i in range(3,30,5)] #k的取值
   t_precision = []
   t_recall = []
   t_accuracy = []
   t_f1_score = []
   for n in kk:
       y_predict = []
       for x in X_test.values:
           a = classify0(x, X_train.values, y_train.values, n)  # 调用k近邻分类
           y_predict.append(a)

t =classification_report(y_test, y_predict, target_names=['3','4','5','6','7','8'],output_dict=True)
       print(t)
       t_accuracy.append(t["accuracy"])
       t_precision.append(t["weighted avg"]["precision"])
       t_recall.append(t["weighted avg"]["recall"])
       t_f1_score.append(t["weighted avg"]["f1-score"])
   plt.figure("数据未处理k近邻")
   plt.subplot(2,2,1)
   #添加文本 #x轴文本
   plt.xlabel('k值')
   #y轴文本
   plt.ylabel('accuracy')
   #标题
   plt.title('不同k值下的accuracy')
   plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,2)
   #添加文本 #x轴文本
   plt.xlabel('k值')
   #y轴文本
   plt.ylabel('precision')
   #标题
   plt.title('不同k值下的precision')
   plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,3)
   #添加文本 #x轴文本
   plt.xlabel('k值')
   #y轴文本
   plt.ylabel('recall')
   #标题
   plt.title('不同k值下的recall')
   plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,4)
   #添加文本 #x轴文本
   plt.xlabel('k值')
   #y轴文本
   plt.ylabel('f1_score')
   #标题
   plt.title('不同k值下的f1_score')
   plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.show()

def func_randomforest(X_train,X_test,y_train,y_test):
   print("随机森林:")
   t_precision = []
   t_recall = []
   t_accuracy = []
   t_f1_score = []
   kk = [10,20,30,40,50,60,70,80] #默认树的数量
   for n in kk:
       clf = RandomForestClassifier(n_estimators=n, max_depth=100,min_samples_split=2, random_state=10,verbose=True)
       clf.fit(X_train,y_train)
       predic = clf.predict(X_test)

print("特征重要性:",clf.feature_importances_)
       print("acc:",clf.score(X_test,y_test))

t =classification_report(y_test, predic, target_names=['3','4','5','6','7','8'],output_dict=True)
       print(t)
       t_accuracy.append(t["accuracy"])
       t_precision.append(t["weighted avg"]["precision"])
       t_recall.append(t["weighted avg"]["recall"])
       t_f1_score.append(t["weighted avg"]["f1-score"])
   plt.figure("数据未处理深度100(随机森林)")
   plt.subplot(2,2,1)
   #添加文本 #x轴文本
   plt.xlabel('树的数量')
   #y轴文本
   plt.ylabel('accuracy')
   #标题
   plt.title('不同树的数量下的accuracy')
   plt.plot(kk,t_accuracy,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,2)
   #添加文本 #x轴文本
   plt.xlabel('树的数量')
   #y轴文本
   plt.ylabel('precision')
   #标题
   plt.title('不同树的数量下的precision')
   plt.plot(kk,t_precision,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,3)
   #添加文本 #x轴文本
   plt.xlabel('树的数量')
   #y轴文本
   plt.ylabel('recall')
   #标题
   plt.title('不同树的数量下的recall')
   plt.plot(kk,t_recall,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.subplot(2,2,4)
   #添加文本 #x轴文本
   plt.xlabel('树的数量')
   #y轴文本
   plt.ylabel('f1_score')
   #标题
   plt.title('不同树的数量下的f1_score')
   plt.plot(kk,t_f1_score,color="r",marker="o",lineStyle="-")
   plt.yticks(np.arange(0,1,0.1))

plt.show()

if __name__ == '__main__':
   #神经网络
   print(func_mlp(X_train,X_test,y_train,y_test))
   #向量机
   print(func_svc(X_train,X_test,y_train,y_test))
   #决策树
   print(func_classtree(X_train,X_test,y_train,y_test))
   #提升树
   print(func_adaboost(X_train,X_test,y_train,y_test))
   #knn
   print(func_knn(X_train,X_test,y_train,y_test))
   #randomforest
   print(func_randomforest(X_train,X_test,y_train,y_test))

来源:https://blog.csdn.net/qq_41934789/article/details/117400996

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com