一文搞懂Java ScheduledExecutorService的使用
作者:UnicornLien 发布时间:2022-11-22 14:23:35
JUC包(java.util.concurrent)中提供了对定时任务的支持,即ScheduledExecutorService接口。
本文对ScheduledExecutorService的介绍,将基于Timer类使用介绍进行,因此请先阅读Timer类使用介绍文章。
此处为语雀内容卡片,点击链接查看
一、创建ScheduledExecutorService对象
ScheduledExecutorService executorService = Executors.newScheduledThreadPool(5);
二、ScheduledExecutorService方法
ScheduledExecutorService实现了ExecutorService接口,ExecutorService接口中的方法事实上属于线程池相关的一般方法,不在本文讨论。
ScheduledExecutorService本身提供了以下4个方法:
ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit):延迟delay单位时间后,执行一次任务
<V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit):延迟delay单位时间后,执行一次任务
ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay, long period, TimeUnit unit):延迟initialDelay单位时间后,执行一次任务,之后每隔period单位时间执行一次任务(固定速率)
ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay, long delay, TimeUnit unit):延迟initialDelay单位时间后,执行一次任务,之后每隔period单位时间执行一次任务(固定延时)
ScheduledExecutorService和Timer进行对比,两者所提供的方法是类似的,区别在于Timer有提供指定时间点执行任务,而ScheduledExecutorService没有提供。
Timer提供的方法返回值均为void,而ScheduledExecutorService的方法返回值均为ScheduledFuture(继承于Future接口)。
三、固定速率和固定延时的区别
和Timer一样,我们用示例来展示ScheduledExecutorService固定速率和固定延时的区别,并与Timer进行对比。
1. 固定速率
示例:
System.out.println("启动于:" + DateUtil.formatNow());
ScheduledExecutorService executorService = Executors.newScheduledThreadPool(5);
executorService.scheduleAtFixedRate(
new Runnable() {
int i = 1;
@Override
public void run() {
System.out.print(i + " " + DateUtil.formatNow() + " 开始执行, ");
if(i == 3) {
ThreadUtil.sleep(11 * 1000);
}
System.out.println(DateUtil.formatNow() + " 结束");
i ++;
}
},
5, 2, TimeUnit.SECONDS);
输出:
启动于:2022-10-31 17:15:44
1 2022-10-31 17:15:49 开始执行, 2022-10-31 17:15:49 结束
2 2022-10-31 17:15:51 开始执行, 2022-10-31 17:15:51 结束
3 2022-10-31 17:15:53 开始执行, 2022-10-31 17:16:04 结束 *
4 2022-10-31 17:16:04 开始执行, 2022-10-31 17:16:04 结束 *
5 2022-10-31 17:16:04 开始执行, 2022-10-31 17:16:04 结束 *
6 2022-10-31 17:16:04 开始执行, 2022-10-31 17:16:04 结束 *
7 2022-10-31 17:16:04 开始执行, 2022-10-31 17:16:04 结束 *
8 2022-10-31 17:16:04 开始执行, 2022-10-31 17:16:04 结束 *
9 2022-10-31 17:16:05 开始执行, 2022-10-31 17:16:05 结束
10 2022-10-31 17:16:07 开始执行, 2022-10-31 17:16:07 结束
11 2022-10-31 17:16:09 开始执行, 2022-10-31 17:16:09 结束
没有11秒耗时的情况下,正常应该是输出:
启动于:2022-10-31 17:15:44
1 2022-10-31 17:15:49 开始执行, 2022-10-31 17:15:49 结束
2 2022-10-31 17:15:51 开始执行, 2022-10-31 17:15:51 结束
3 2022-10-31 17:15:53 开始执行, 2022-10-31 17:15:53 结束
4 2022-10-31 17:15:55 开始执行, 2022-10-31 17:15:55 结束
5 2022-10-31 17:15:57 开始执行, 2022-10-31 17:15:57 结束
6 2022-10-31 17:15:59 开始执行, 2022-10-31 17:15:59 结束
7 2022-10-31 17:16:01 开始执行, 2022-10-31 17:16:01 结束
8 2022-10-31 17:16:03 开始执行, 2022-10-31 17:16:03 结束
9 2022-10-31 17:16:05 开始执行, 2022-10-31 17:16:05 结束
10 2022-10-31 17:16:07 开始执行, 2022-10-31 17:16:07 结束
11 2022-10-31 17:16:09 开始执行, 2022-10-31 17:16:09 结束
从测试结果中可以看出,当有一次任务执行耗时过长,超出了设定的period时间单位,将会影响后续5次任务准时执行,当耗时任务完成后,ScheduledExecutorService将会立即将延误的5次任务一起补上,并保障后续的任务按预期的时间点执行。
这与ScheduledExecutorService固定速率的效果与Timer是完全一样的,读者可直接参考Timer的固定速率介绍。
2. 固定延时
示例:
System.out.println("启动于:" + DateUtil.formatNow());
ScheduledExecutorService executorService = Executors.newScheduledThreadPool(5);
executorService.scheduleWithFixedDelay(
new Runnable() {
int i = 1;
@Override
public void run() {
System.out.print(i + " " + DateUtil.formatNow() + " 开始执行, ");
if(i == 3) {
ThreadUtil.sleep(11 * 1000);
}
System.out.println(DateUtil.formatNow() + " 结束");
i ++;
}
},
5, 2, TimeUnit.SECONDS);
输出:
1 2022-10-31 17:16:41 开始执行, 2022-10-31 17:16:41 结束
2 2022-10-31 17:16:43 开始执行, 2022-10-31 17:16:43 结束
3 2022-10-31 17:16:45 开始执行, 2022-10-31 17:16:56 结束 *
4 2022-10-31 17:16:58 开始执行, 2022-10-31 17:16:58 结束
5 2022-10-31 17:17:00 开始执行, 2022-10-31 17:17:00 结束
6 2022-10-31 17:17:02 开始执行, 2022-10-31 17:17:02 结束
7 2022-10-31 17:17:04 开始执行, 2022-10-31 17:17:04 结束
8 2022-10-31 17:17:06 开始执行, 2022-10-31 17:17:06 结束
9 2022-10-31 17:17:08 开始执行, 2022-10-31 17:17:08 结束
没有11秒耗时的情况下,正常应该是输出:
1 2022-10-31 17:16:41 开始执行, 2022-10-31 17:16:41 结束
2 2022-10-31 17:16:43 开始执行, 2022-10-31 17:16:43 结束
3 2022-10-31 17:16:45 开始执行, 2022-10-31 17:16:45 结束
4 2022-10-31 17:16:47 开始执行, 2022-10-31 17:16:47 结束
5 2022-10-31 17:16:49 开始执行, 2022-10-31 17:16:49 结束
6 2022-10-31 17:16:51 开始执行, 2022-10-31 17:16:51 结束
7 2022-10-31 17:16:53 开始执行, 2022-10-31 17:16:53 结束
8 2022-10-31 17:16:55 开始执行, 2022-10-31 17:16:55 结束
9 2022-10-31 17:16:57 开始执行, 2022-10-31 17:16:57 结束
固定延时是当任务执行耗时过长,超出设定的delay时间单位,后续的任务将会被顺延推迟,这个设计是与Timer一样的,但与Timer却有一点小区别。
在Timer类使用介绍中,曾提到Timer类固定延时下与我想象的不太一致,Timer在第3次任务执行完成后会立即执行第4次任务,接着才是间隔2秒执行第5次任务。
而ScheduledExecutorService则与我的想象完全一致,当第3次任务执行完成后,会间隔2秒再执行第4次任务。
所以固定延时下,Timer和ScheduledExecutorService的实现是有一点区别的。
四、调度多个任务
在Timer中,一个TimerTask对象是一个任务。
而在ScheduledExecutorService中,则一个Runnable对象一个任务。
第三节介绍的是固定速率和固定延时是如何影响一个可重复执行任务(一个Runnable对象)的多次执行的。
而本节介绍的是ScheduledExecutorService如何同时调度多个可重复执行任务的。
与Timer内部仅1个线程不同,ScheduledExecutorService内部采用的是线程池,是支持自己设定线程数的。
那么理论上来说,如果要加入2个任务,ScheduledExecutorService设定线程数为2,就不会出现相互影响的情况。
我们来验证一下。
定义任务,当执行第3次时将会休眠11秒:
class Task implements Runnable {
private int i = 1;
private String name;
public Task(String name) {
this.name = name;
}
@Override
public void run() {
System.out.println(i + " " + name + ":" + DateUtil.formatNow() + " 开始执行");
if(i == 3) {
ThreadUtil.sleep(11 * 1000);
}
System.out.println(i + " " + name + ":" + DateUtil.formatNow() + " 执行结束");
i ++;
}
}
使用ScheduledExecutorService进行调度:
System.out.println("启动于:" + DateUtil.formatNow());
ScheduledExecutorService executorService = Executors.newScheduledThreadPool(2);
Task task1 = new Task("task1");
Task task2 = new Task("task2");
executorService.scheduleWithFixedDelay(task1, 5, 2, TimeUnit.SECONDS);
executorService.scheduleWithFixedDelay(task2, 5, 2, TimeUnit.SECONDS);
由于控制台输出时,task1和task2的日志会混在一起,不容易阅读,我这边将task1和task2的日志分开。
task1日志:
启动于:2022-10-31 17:49:51
1 task1:2022-10-31 17:49:56 开始执行
1 task1:2022-10-31 17:49:56 执行结束
2 task1:2022-10-31 17:49:58 开始执行
2 task1:2022-10-31 17:49:58 执行结束
3 task1:2022-10-31 17:50:00 开始执行
3 task1:2022-10-31 17:50:11 执行结束
4 task1:2022-10-31 17:50:13 开始执行
4 task1:2022-10-31 17:50:13 执行结束
5 task1:2022-10-31 17:50:15 开始执行
5 task1:2022-10-31 17:50:15 执行结束
task2日志:
启动于:2022-10-31 17:49:51
1 task2:2022-10-31 17:49:56 开始执行
1 task2:2022-10-31 17:49:56 执行结束
2 task2:2022-10-31 17:49:58 开始执行
2 task2:2022-10-31 17:49:58 执行结束
3 task2:2022-10-31 17:50:00 开始执行
3 task2:2022-10-31 17:50:11 执行结束
4 task2:2022-10-31 17:50:13 开始执行
4 task2:2022-10-31 17:50:13 执行结束
5 task2:2022-10-31 17:50:15 开始执行
经过测试可以确定,当加入的任务数不超过线程池线程数时,即使任务存在耗时也不会相互影响,而仅是影响自身任务下一次执行的时间点。
那如果加入任务数超出了线程数呢?
我们测试一下加入3个任务,线程数仍然为2.
Task task1 = new Task("task1");
Task task2 = new Task("task2");
Task task3 = new Task("task3");
executorService.scheduleWithFixedDelay(task1, 5, 2, TimeUnit.SECONDS);
executorService.scheduleWithFixedDelay(task2, 5, 2, TimeUnit.SECONDS);
executorService.scheduleWithFixedDelay(task3, 5, 2, TimeUnit.SECONDS);
将三个任务的日志分开展示。
task1:
启动于:2022-10-31 17:53:22
1 task1:2022-10-31 17:53:27 开始执行
1 task1:2022-10-31 17:53:27 执行结束
2 task1:2022-10-31 17:53:29 开始执行
2 task1:2022-10-31 17:53:29 执行结束
3 task1:2022-10-31 17:53:31 开始执行
3 task1:2022-10-31 17:53:42 执行结束
4 task1:2022-10-31 17:53:44 开始执行
4 task1:2022-10-31 17:53:44 执行结束
5 task1:2022-10-31 17:53:46 开始执行
5 task1:2022-10-31 17:53:46 执行结束
6 task1:2022-10-31 17:53:48 开始执行
6 task1:2022-10-31 17:53:48 执行结束
7 task1:2022-10-31 17:53:50 开始执行
7 task1:2022-10-31 17:53:50 执行结束
8 task1:2022-10-31 17:53:52 开始执行
8 task1:2022-10-31 17:53:52 执行结束
9 task1:2022-10-31 17:53:54 开始执行
9 task1:2022-10-31 17:53:54 执行结束
10 task1:2022-10-31 17:53:56 开始执行
10 task1:2022-10-31 17:53:56 执行结束
task2:
启动于:2022-10-31 17:53:22
1 task2:2022-10-31 17:53:27 开始执行
1 task2:2022-10-31 17:53:27 执行结束
2 task2:2022-10-31 17:53:29 开始执行
2 task2:2022-10-31 17:53:29 执行结束
3 task2:2022-10-31 17:53:31 开始执行
3 task2:2022-10-31 17:53:42 执行结束
4 task2:2022-10-31 17:53:44 开始执行
4 task2:2022-10-31 17:53:44 执行结束
5 task2:2022-10-31 17:53:46 开始执行
5 task2:2022-10-31 17:53:46 执行结束
6 task2:2022-10-31 17:53:48 开始执行
6 task2:2022-10-31 17:53:48 执行结束
7 task2:2022-10-31 17:53:50 开始执行
7 task2:2022-10-31 17:53:50 执行结束
8 task2:2022-10-31 17:53:52 开始执行
8 task2:2022-10-31 17:53:52 执行结束
9 task2:2022-10-31 17:53:54 开始执行
9 task2:2022-10-31 17:53:54 执行结束
10 task2:2022-10-31 17:53:56 开始执行
10 task2:2022-10-31 17:53:56 执行结束
task3:
启动于:2022-10-31 17:53:22
1 task3:2022-10-31 17:53:27 开始执行
1 task3:2022-10-31 17:53:27 执行结束
2 task3:2022-10-31 17:53:29 开始执行
2 task3:2022-10-31 17:53:29 执行结束
3 task3:2022-10-31 17:53:42 开始执行
3 task3:2022-10-31 17:53:53 执行结束
4 task3:2022-10-31 17:53:55 开始执行
4 task3:2022-10-31 17:53:55 执行结束
5 task3:2022-10-31 17:53:57 开始执行
5 task3:2022-10-31 17:53:57 执行结束
从以上日志可以看出,task1和task2执行是正常的,但是task3从第3次执行开始出现错误。
task3第三次时间点正确时间应该是17:53:31,而实际上被推迟到了17:53:42才开始。
从这点我们可以推测出,当时2个线程都在执行task1、task2的耗时11秒的第3次任务,导致task3被推迟。
因此,我们在使用ScheduledExecutorService调度多个任务时,应注意尽可能缩短任务的处理耗时,以及避免任务数超出线程数。
五、其他要点
任务执行过程中抛出异常会发生什么情况?
Timer内部是单个线程处理所有任务,当抛出异常时,Timer线程将终止运行;
ScheduledExecutorService内部是一个线程池,当抛出异常时,此任务所在线程将会终止运行被回收,该任务后续无法再触发执行,其他线程不受影响,因此编写任务执行代码要注意捕获异常。
来源:https://www.cnblogs.com/ladderx/p/16849195.html


猜你喜欢
- 今天的几个目标: 1. 自定义ActionProvider 2. Toolbar ActionBar自定义Menu 3. Toolbar A
- 目录1. 支付宝支付接口(沙箱实现)1.1 支付宝沙箱账号获取1.2 下载客户端(目前好像只支持Android)1.3 代码配置1. 支付宝
- 深拷贝是指源对象与拷贝对象互相独立,其中任何一个对象的改动都不会对另外一个对象
- 前言尽管可以通过不同的方式组合IO流类,但我们可能也就只用到其中的几种组合。下面的例子可以作为典型的IO用法的基本参考。在这些示例中,异常处
- 桥接模式桥接模式是将抽象部分与它的实现部分分离,使他们都可以独立地变化。它是一种对象结构型模式,又称为柄体(Handle and Body)
- 本文实例为大家分享了Unity3D生成一段隧道网格的具体代码,供大家参考,具体内容如下一、需求最近有一个需求,生成段隧道的骨架网格。目前想到
- 前言P6Spy是一个框架,它可以无缝地拦截和记录数据库活动,而无需更改现有应用程序的代码。一般我们使用的比较多的是使用p6spy打印我们最后
- 首先是,在不同的AS中,gradle版本不同,下载的sdk版本不同,这些,都在gradle(Project、Models)相关代码里调过来就
- Android 双击返回键退出程序的方法总结下面先说说LZ思路,具体如下: 1. 第一种就是根据用户点击俩次的时间间隔去判断是否退出程序;
- 本文介绍了JAVA中实现原生的 socket 通信机制原理,分享给大家,具体如下:当前环境jdk == 1.8知识点socket 的连接处理
- 简介:顺序一致性内存模型是一个理论参考模型,处理器的内存模型和编程语言的内存模型都会以顺序一致性内存模型作为参照。1、数据竞争和顺序一致性当
- 在前面都写到用AsyncTask来获取网络中的图片。其实利用消息机制也能获取网络中的图片,而且本人感觉用消息机制还是挺简单的。消息机制的图解
- 前些日子,组里为了在目前的Android程序里实现基于ListView子项的动画效果,希望将最新的RecyclerView引入到程序中,于是
- Runtime.getRuntime().exec 路径包含空格1. 现象java代码通过Runtime.getRuntime().exec
- 前言为什么用动静态库我们在实际开发中,经常要使用别人已经实现好的功能,这是为了开发效率和鲁棒性(健壮性);因为那些功能都是顶尖的工程师已经写
- 本文实例为大家分享了Android画笔屏幕锁小程序,具有一定的参考价值,感兴趣的小伙伴们可以参考一下1.如果使用GestureOverlay
- 在"C#中,什么时候用yield return"中,我们了解到:使用yield return返回集合,不是一次性加载到内
- 通过使用java mail来实现读取163邮箱,qq邮箱的邮件内容。1.代码实现创建springboot项目,引入依赖包<!--mai
- 由于又开了新机器所以又要重新布置Jenkins从老项目拷贝过来,发现Job Import Plugin 这个插件更新了,和以前的有些出入所以
- Commons Beanutils是Apache开源组