python时间日期函数与利用pandas进行时间序列处理详解
作者:wdc 发布时间:2023-06-15 20:39:40
python标准库包含于日期(date)和时间(time)数据的数据类型,datetime、time以及calendar模块会被经常用到。
datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差。
下面我们先简单的了解下python日期和时间数据类型及工具
给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象
from datetime import datetime
from datetime import timedelta
now = datetime.now()
now
datetime.datetime(2017, 6, 27, 15, 56, 56, 167000)
datetime参数:datetime(year, month, day[, hour[, minute[, second[, microsecond[,tzinfo]]]]])
delta = now - datetime(2017,6,27,10,10,10,10)
delta
datetime.timedelta(0, 20806, 166990)
delta.days
0
delta.seconds
20806
delta.microseconds
166990
datetime模块中的数据类型
类型 | 说明 |
---|---|
date | 以公历形式存储日历日期(年、月、日) |
time | 将时间存储为时、分、秒、毫秒 |
datetime | 存储日期和时间 |
timedelta | 表示两个datetime值之间的差(日、秒、毫秒) |
字符串和datetime的相互转换
1)python标准库函数
日期转换成字符串:利用str 或strftime
字符串转换成日期:datetime.strptime
stamp = datetime(2017,6,27)
str(stamp)
'2017-06-27 00:00:00'
stamp.strftime('%y-%m-%d')#%Y是4位年,%y是2位年
'17-06-27'
#对多个时间进行解析成字符串
date = ['2017-6-26','2017-6-27']
datetime2 = [datetime.strptime(x,'%Y-%m-%d') for x in date]
datetime2
[datetime.datetime(2017, 6, 26, 0, 0), datetime.datetime(2017, 6, 27, 0, 0)]
2)第三方库dateutil.parser的时间解析函数
from dateutil.parser import parse
parse('2017-6-27')
datetime.datetime(2017, 6, 27, 0, 0)
parse('27/6/2017',dayfirst =True)
datetime.datetime(2017, 6, 27, 0, 0)
3)pandas处理成组日期
pandas通常用于处理成组日期,不管这些日期是DataFrame的轴索引还是列,to_datetime方法可以解析多种不同的日期表示形式。
date
['2017-6-26', '2017-6-27']
import pandas as pd
pd.to_datetime(date)
DatetimeIndex(['2017-06-26', '2017-06-27'], dtype='datetime64[ns]', freq=None)
datetime 格式定义
代码 | 说明 |
---|---|
%Y | 4位数的年 |
%y | 2位数的年 |
%m | 2位数的月[01,12] |
%d | 2位数的日[01,31] |
%H | 时(24小时制)[00,23] |
%l | 时(12小时制)[01,12] |
%M | 2位数的分[00,59] |
%S | 秒[00,61]有闰秒的存在 |
%w | 用整数表示的星期几[0(星期天),6] |
%F | %Y-%m-%d简写形式例如,2017-06-27 |
%D | %m/%d/%y简写形式 |
pandas时间序列基础以及时间、日期处理
pandas最基本的时间序列类型就是以时间戳(时间点)(通常以python字符串或datetime对象表示)为索引的Series:
dates = ['2017-06-20','2017-06-21',\
'2017-06-22','2017-06-23','2017-06-24','2017-06-25','2017-06-26','2017-06-27']
import numpy as np
ts = pd.Series(np.random.randn(8),index = pd.to_datetime(dates))
ts
2017-06-20 0.788811
2017-06-21 0.372555
2017-06-22 0.009967
2017-06-23 -1.024626
2017-06-24 0.981214
2017-06-25 0.314127
2017-06-26 -0.127258
2017-06-27 1.919773
dtype: float64
ts.index
DatetimeIndex(['2017-06-20', '2017-06-21', '2017-06-22', '2017-06-23',
'2017-06-24', '2017-06-25', '2017-06-26', '2017-06-27'],
dtype='datetime64[ns]', freq=None)
pandas不同索引的时间序列之间的算术运算会自动按日期对齐
ts[::2]#从前往后每隔两个取数据
2017-06-20 0.788811
2017-06-22 0.009967
2017-06-24 0.981214
2017-06-26 -0.127258
dtype: float64
ts[::-2]#从后往前逆序每隔两个取数据
2017-06-27 1.919773
2017-06-25 0.314127
2017-06-23 -1.024626
2017-06-21 0.372555
dtype: float64
ts + ts[::2]#自动数据对齐
2017-06-20 1.577621
2017-06-21 NaN
2017-06-22 0.019935
2017-06-23 NaN
2017-06-24 1.962429
2017-06-25 NaN
2017-06-26 -0.254516
2017-06-27 NaN
dtype: float64
索引为日期的Series和DataFrame数据的索引、选取以及子集构造
方法:
1).index[number_int]
2)[一个可以被解析为日期的字符串]
3)对于,较长的时间序列,只需传入‘年'或‘年月'可返回对应的数据切片
4)通过时间范围进行切片索引
ts
2017-06-20 0.788811
2017-06-21 0.372555
2017-06-22 0.009967
2017-06-23 -1.024626
2017-06-24 0.981214
2017-06-25 0.314127
2017-06-26 -0.127258
2017-06-27 1.919773
dtype: float64
ts[ts.index[2]]
0.0099673896063391908
ts['2017-06-21']#传入可以被解析成日期的字符串
0.37255538918121028
ts['21/06/2017']
0.37255538918121028
ts['20170621']
0.37255538918121028
ts['2017-06']#传入年或年月
2017-06-20 0.788811
2017-06-21 0.372555
2017-06-22 0.009967
2017-06-23 -1.024626
2017-06-24 0.981214
2017-06-25 0.314127
2017-06-26 -0.127258
2017-06-27 1.919773
dtype: float64
ts['2017-06-20':'2017-06-23']#时间范围进行切片
2017-06-20 0.788811
2017-06-21 0.372555
2017-06-22 0.009967
2017-06-23 -1.024626
dtype: float64
带有重复索引的时间序列
1).index.is_unique检查索引日期是否是唯一的
2)对非唯一时间戳的数据进行聚合,通过groupby,并传入level = 0(索引的唯一一层)
dates = pd.DatetimeIndex(['2017/06/01','2017/06/02','2017/06/02','2017/06/02','2017/06/03'])
dates
DatetimeIndex(['2017-06-01', '2017-06-02', '2017-06-02', '2017-06-02',
'2017-06-03'],
dtype='datetime64[ns]', freq=None)
dup_ts = pd.Series(np.arange(5),index = dates)
dup_ts
2017-06-01 0
2017-06-02 1
2017-06-02 2
2017-06-02 3
2017-06-03 4
dtype: int32
dup_ts.index.is_unique
False
dup_ts['2017-06-02']
2017-06-02 1
2017-06-02 2
2017-06-02 3
dtype: int32
grouped = dup_ts.groupby(level=0).mean()
grouped
2017-06-01 0
2017-06-02 2
2017-06-03 4
dtype: int32
dup_df = pd.DataFrame(np.arange(10).reshape((5,2)),index = dates )
dup_df
0 | 1 | |
---|---|---|
2017-06-01 | 0 | 1 |
2017-06-02 | 2 | 3 |
2017-06-02 | 4 | 5 |
2017-06-02 | 6 | 7 |
2017-06-03 | 8 | 9 |
grouped_df = dup_df.groupby(level=0).mean()##针对DataFrame
grouped_df
0 | 1 | |
---|---|---|
2017-06-01 | 0 | 1 |
2017-06-02 | 4 | 5 |
2017-06-03 | 8 | 9 |
本文总结了以下4个知识点
1)字符串、日期的转换方法
2)日期和时间的主要python,datetime、timedelta、pandas.to_datetime等
3)以时间为索引的Series和DataFrame的索引、切片
4)带有重复时间索引时的索引,.groupby(level=0)应用
来源:http://blog.csdn.net/LY_ysys629/article/details/73822716


猜你喜欢
- 1、引言小 * 丝:鱼哥,这个周末过得咋样小鱼:酸爽~ ~小 * 丝:额~~ 我能想到的,是这样吗?小鱼:有多远你走多远。小 * 丝:唉,鱼哥,你别说,
- 本文实例讲述了mysql实现多表关联统计的方法。分享给大家供大家参考,具体如下:需求:统计每本书打赏金额,不同时间的充值数据统计,消费统计,
- 某日,一同学给小的发了 Github 源码,说是可以轻松查到删除自己的微信好友,于是就开始了作死之路。Github 源码请看:0x5e/we
- 双击编辑功能如何实现:例如:标题 (鼠标双击“标题”文字 即出现可编辑的输入框形式及提交按钮) <!D
- 我们在进行表单设计时,可能要用到select下拉选项控件,遗憾的是,IE浏览器默认的select控件外观非常丑陋,而且不能用样式来控制,不能
- 本文实例讲述了Flask框架各种常见装饰器。分享给大家供大家参考,具体如下:效果类似django的process_request的装饰器@a
- 1.open使用open打开文件后一定要记得调用文件对象的close()方法。比如可以用try/finally语句来确保最后能关闭文件。fi
- 一、如何实现可迭代对象和迭代器对象?实际案例某软件要求从网络抓取各个城市气味信息,并其次显示:北京: 15 ~ 20 天津: 17 ~ 22
- Overview这篇博客内容将包括对XML文件的解析、追加新元素后写入到XML,以及更新原XML文件中某结点的值。使用的是python的xm
- 与矩形相交的线条颜色为红色,其他为蓝色。演示如下:实例代码如下:import numpy as npimport matplot
- 如下所示:>>> import numpy as np>>> a = np.array([[1, 2,
- 这是 2020 年第 3 个版本,也是最后一个版本。在 GoLand 2020.3 中,您可以探索 goroutines dumps,运行并
- pytest-playwright 是一个 Python 包,它允许您使用 Microsoft 的 Playwright 库在 Python
- 小编最近由于工作原因要用到python,一门新的知识需要接触,对于我来说难度还是很大的。python工程目录结构每次创建一个python工程
- 事件的概念事件:指的是文档或者浏览器窗口中发生的一些特定交互瞬间。我们可以通过 * (或者处理程序)来预定事件,以便事件发生的时候执行相应的
- 本文实例为大家分享了微信小程序实现底部导航带跳转功能的具体代码,供大家参考,具体内容如下index.wxml<!--底部导航 --&g
- 本文实例讲述了Python实现的json文件读取及中文乱码显示问题解决方法。分享给大家供大家参考,具体如下:city.json文件的内容如下
- 早期写的python障碍式期权的定价脚本,供大家参考,具体内容如下#coding:utf-8'''障碍期权q=x/s
- opencv读取图像为b,g,r方法,比如img = cv2.imread("xx.jpg")cv2.imshow(&q
- 自动化收集SQLSERVER诊断信息相信很多人都遇到过当SQLSERVER出现问题的时候,而你又解决不了需要DBA或者微软售后支持工程师去帮