网络编程
位置:首页>> 网络编程>> Python编程>> PyTorch搭建LSTM实现时间序列负荷预测

PyTorch搭建LSTM实现时间序列负荷预测

作者:Cyril_KI  发布时间:2023-08-18 09:10:09 

标签:PyTorch,LSTM,时间序列,负荷预测

I. 前言

在上一篇文章深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中,我详细地解释了如何利用PyTorch来搭建一个LSTM模型,本篇文章的主要目的是搭建一个LSTM模型用于时间序列预测。

系列文章:

PyTorch搭建LSTM实现多变量多步长时序负荷预测

PyTorch搭建LSTM实现多变量时序负荷预测

PyTorch深度学习LSTM从input输入到Linear输出

PyTorch搭建双向LSTM实现时间序列负荷预测

II. 数据处理

数据集为某个地区某段时间内的电力负荷数据,除了负荷以外,还包括温度、湿度等信息。

本篇文章暂时不考虑其它变量,只考虑用历史负荷来预测未来负荷。

本文中,我们根据前24个时刻的负荷下一时刻的负荷。有关多变量预测请参考:PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)。

def load_data(file_name):
   global MAX, MIN
   df = pd.read_csv('data/new_data/' + file_name, encoding='gbk')
   columns = df.columns
   df.fillna(df.mean(), inplace=True)
   MAX = np.max(df[columns[1]])
   MIN = np.min(df[columns[1]])
   df[columns[1]] = (df[columns[1]] - MIN) / (MAX - MIN)
   return df
class MyDataset(Dataset):
   def __init__(self, data):
       self.data = data
   def __getitem__(self, item):
       return self.data[item]
   def __len__(self):
       return len(self.data)
def nn_seq(file_name, B):
   print('处理数据:')
   data = load_data(file_name)
   load = data[data.columns[1]]
   load = load.tolist()
   load = torch.FloatTensor(load).view(-1)
   data = data.values.tolist()
   seq = []
   for i in range(len(data) - 24):
       train_seq = []
       train_label = []
       for j in range(i, i + 24):
           train_seq.append(load[j])
       train_label.append(load[i + 24])
       train_seq = torch.FloatTensor(train_seq).view(-1)
       train_label = torch.FloatTensor(train_label).view(-1)
       seq.append((train_seq, train_label))
   # print(seq[:5])
   Dtr = seq[0:int(len(seq) * 0.7)]
   Dte = seq[int(len(seq) * 0.7):len(seq)]
   train_len = int(len(Dtr) / B) * B
   test_len = int(len(Dte) / B) * B
   Dtr, Dte = Dtr[:train_len], Dte[:test_len]
   train = MyDataset(Dtr)
   test = MyDataset(Dte)
   Dtr = DataLoader(dataset=train, batch_size=B, shuffle=False, num_workers=0)
   Dte = DataLoader(dataset=test, batch_size=B, shuffle=False, num_workers=0)
   return Dtr, Dte

上面代码用了DataLoader来对原始数据进行处理,最终得到了batch_size=B的数据集Dtr和Dte,Dtr为训练集,Dte为测试集。

III. LSTM模型

这里采用了深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)中的模型:

class LSTM(nn.Module):
   def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size):
       super().__init__()
       self.input_size = input_size
       self.hidden_size = hidden_size
       self.num_layers = num_layers
       self.output_size = output_size
       self.num_directions = 1 # 单向LSTM
       self.batch_size = batch_size
       self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True)
       self.linear = nn.Linear(self.hidden_size, self.output_size)
   def forward(self, input_seq):
       h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
       c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(device)
       seq_len = input_seq.shape[1] # (5, 24)
       # input(batch_size, seq_len, input_size)
       input_seq = input_seq.view(self.batch_size, seq_len, 1)  # (5, 24, 1)
       # output(batch_size, seq_len, num_directions * hidden_size)
       output, _ = self.lstm(input_seq, (h_0, c_0)) # output(5, 24, 64)
       output = output.contiguous().view(self.batch_size * seq_len, self.hidden_size) # (5 * 24, 64)
       pred = self.linear(output) # pred(150, 1)
       pred = pred.view(self.batch_size, seq_len, -1) # (5, 24, 1)
       pred = pred[:, -1, :]  # (5, 1)
       return pred

IV. 训练

def LSTM_train(name, b):
   Dtr, Dte = nn_seq(file_name=name, B=b)
   input_size, hidden_size, num_layers, output_size = 1, 64, 5, 1
   model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=b).to(device)
   loss_function = nn.MSELoss().to(device)
   optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
   # 训练
   epochs = 15
   cnt = 0
   for i in range(epochs):
       cnt = 0
       print('当前', i)
       for (seq, label) in Dtr:
           cnt += 1
           seq = seq.to(device)
           label = label.to(device)
           y_pred = model(seq)
           loss = loss_function(y_pred, label)
           optimizer.zero_grad()
           loss.backward()
           optimizer.step()
           if cnt % 100 == 0:
               print('epoch', i, ':', cnt - 100, '~', cnt, loss.item())
   state = {'model': model.state_dict(), 'optimizer': optimizer.state_dict()}
   torch.save(state, LSTM_PATH)

一共训练了 * :

PyTorch搭建LSTM实现时间序列负荷预测

V. 测试

def test(name, b):
   global MAX, MIN
   Dtr, Dte = nn_seq(file_name=name, B=b)
   pred = []
   y = []
   print('loading model...')
   input_size, hidden_size, num_layers, output_size = 1, 64, 5, 1
   model = LSTM(input_size, hidden_size, num_layers, output_size, batch_size=b).to(device)
   model.load_state_dict(torch.load(LSTM_PATH)['model'])
   model.eval()
   print('predicting...')
   for (seq, target) in Dte:
       target = list(chain.from_iterable(target.data.tolist()))
       y.extend(target)
       seq = seq.to(device)
       seq_len = seq.shape[1]
       seq = seq.view(model.batch_size, seq_len, 1)  # (5, 24, 1)
       with torch.no_grad():
           y_pred = model(seq)
           y_pred = list(chain.from_iterable(y_pred.data.tolist()))
           pred.extend(y_pred)
   y, pred = np.array(y), np.array(pred)
   y = (MAX - MIN) * y + MIN
   pred = (MAX - MIN) * pred + MIN
   print('accuracy:', get_mape(y, pred))
   # plot
   x = [i for i in range(1, 151)]
   x_smooth = np.linspace(np.min(x), np.max(x), 600)
   y_smooth = make_interp_spline(x, y[0:150])(x_smooth)
   plt.plot(x_smooth, y_smooth, c='green', marker='*', ms=1, alpha=0.75, label='true')
   y_smooth = make_interp_spline(x, pred[0:150])(x_smooth)
   plt.plot(x_smooth, y_smooth, c='red', marker='o', ms=1, alpha=0.75, label='pred')
   plt.grid(axis='y')
   plt.legend()
   plt.show()

MAPE为6.07%:

PyTorch搭建LSTM实现时间序列负荷预测

PyTorch搭建LSTM实现时间序列负荷预测

VI. 源码及数据

源码及数据我放在了GitHub上,LSTM-Load-Forecasting

来源:https://blog.csdn.net/Cyril_KI/article/details/122569775

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com