浅谈opencv自动光学检测、目标分割和检测(连通区域和findContours)
作者:大米饭盖不住四喜丸子 发布时间:2023-04-15 09:25:18
标签:opencv,自动光学,目标分割,检测
步骤如下:
1.图片灰化;
2.中值滤波 去噪
3.求图片的光影(自动光学检测)
4.除法去光影
5.阈值操作
6.实现了三种目标检测方法
主要分两种连通区域和findContours
过程遇到了错误主要是图片忘了灰化处理,随机颜色的问题。下面代码都已经进行了解决
这是findContours的效果
下面是连通区域的结果
#include <opencv2\core\utility.hpp>
#include <opencv2\imgproc.hpp>
#include <opencv2\highgui.hpp>
#include<opencv2\opencv.hpp>
#include <opencv2\core\core.hpp>
#include <opencv2\core\matx.hpp>
#include<string>
#include <iostream>
#include <limits>
using namespace std;
using namespace cv;
Mat img = imread("C:\\Users\\hasee\\Desktop\\luosi.jpg",0);
Mat removeLight(Mat imge, Mat pattern, int method);
Mat calculateLightPattern(Mat img);
static Scalar randomColor(RNG& rng);
void ConnectedComponents(Mat img);
void ConnectedComponetsStats(Mat img);
void FindContoursBasic(Mat img);
void main()
{
Mat img_noise;
medianBlur(img,img_noise,3);
Mat pattern = calculateLightPattern(img_noise);
Mat re_light = removeLight(img_noise, pattern, 1);
Mat img_thr;
threshold(re_light,img_thr,30,255,THRESH_BINARY);
//ConnectedComponents(img_thr);
ConnectedComponetsStats(img_thr);
//FindContoursBasic(img_thr);
waitKey(0);
}
Mat removeLight(Mat imge, Mat pattern, int method) {
Mat aux;
if (method == 1) {
Mat img32, pattern32;
imge.convertTo(img32, CV_32F);
pattern.convertTo(pattern32, CV_32F);
aux = 1 - (img32 / pattern32);
aux = aux * 255;
aux.convertTo(aux, CV_8U);
}
else {
aux = pattern - imge;
}
return aux;
}
Mat calculateLightPattern(Mat img) {
Mat pattern;
blur(img, pattern, Size(img.cols / 3, img.cols / 3));
return pattern;
}
static Scalar randomColor(RNG& rng)
{
int icolor = (unsigned)rng;
return Scalar(icolor & 255, (icolor >> 8) & 255, (icolor >> 16) & 255);
}
void ConnectedComponents(Mat img) {
Mat lables;
int num_objects = connectedComponents(img, lables);
if (num_objects < 2) {
cout << "未检测到目标" << endl;
return;
}
else {
cout << "检测到的目标数量: " << num_objects - 1 << endl;
}
Mat output = Mat::zeros(img.rows,img.cols,CV_8UC3);
RNG rng(0xFFFFFFFF);
for (int i = 1; i < num_objects;i++) {
Mat mask = lables == i;
output.setTo(randomColor(rng),mask);
}
imshow("Result",output);
}
void ConnectedComponetsStats(Mat img) {
Mat labels, stats, centroids;
int num_objects = connectedComponentsWithStats(img,labels,stats,centroids);
if (num_objects<2) {
cout << "未检测到目标" << endl;
return;
}
else {
cout << "检测到的目标数量: " << num_objects - 1 << endl;
}
Mat output = Mat::zeros(img.rows, img.cols, CV_8UC3);
RNG rng(0xFFFFFFFF);
for (int i = 1; i < num_objects; i++) {
Mat mask = labels == i;
output.setTo(randomColor(rng), mask);
stringstream ss;
ss << "area: " << stats.at<int>(i,CC_STAT_AREA);
putText(output,ss.str(), centroids.at<Point2d>(i),FONT_HERSHEY_SIMPLEX,0.4,Scalar(255,255,255));
}
imshow("Result", output);
}
void FindContoursBasic(Mat img) {
vector<vector<Point>> contours;
findContours(img, contours, RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
Mat output = Mat::zeros(img.rows, img.cols, CV_8UC3);
if (contours.size()==0) {
cout << "未检测到对象" << endl;
return;
}else{
cout << "检测到对象数量: " << contours.size() << endl;
}
RNG rng(0xFFFFFFFF);
for (int i = 0; i < contours.size(); i++)
drawContours(output,contours,i,randomColor(rng));
imshow("Result", output);
}
补充知识:SURF特征点检测与匹配之误匹配点删除
SURF特征点检测与匹配之误匹配点删除
SURF(SpeededUp Robust Feature)是加速版的具有鲁棒性的算法,是SIFT算法的加速版。
但是SURF特征匹配之后有大量的误匹配点,需要对这些误匹配点进行删除。
这里不从理论上讲解SURF原理等,直接说用法。
特征匹配的步骤分为三步:
1、找出特征点
2、描述特征点
3、特征点匹配
具体基本代码见最后。具体的可以看毛星云的书籍,但是个人认为其编程风格不严谨,自己有做改动。
但是匹配出来的结果如下:
有很多的误匹配点,如何对误匹配点进行删除呢。
双向匹配加距离约束。
实验结果如下:效果还是非常好的。
#include "stdafx.h"
#include <opencv2\opencv.hpp>
#include <opencv2\nonfree\nonfree.hpp>
#include <opencv2\legacy\legacy.hpp>
#include <iostream>
int _tmain(int argc, _TCHAR* argv[])
{
//读取图片
cv::Mat srcImg1 = cv::imread("1.jpg", 1);
cv::Mat srcImg2 = cv::imread("2.jpg", 1);
if (srcImg1.empty() || srcImg2.empty())
{
std::cout << "Read Image ERROR!" << std::endl;
return 0;
}
//SURF算子特征点检测
int minHessian = 700;
cv::SurfFeatureDetector detector(minHessian);//定义特征点类对象
std::vector<cv::KeyPoint> keyPoint1, keyPoint2;//存放动态数组,也就是特征点
detector.detect(srcImg1, keyPoint1);
detector.detect(srcImg2, keyPoint2);
//特征向量
cv::SurfDescriptorExtractor extrator;//定义描述类对象
cv::Mat descriptor1, descriptor2;//描述对象
extrator.compute(srcImg1, keyPoint1, descriptor1);
extrator.compute(srcImg2, keyPoint2, descriptor2);
//BruteForce暴力匹配
cv::BruteForceMatcher <cv::L2<float>>matcher;//匹配器
std::vector <cv::DMatch> matches;
matcher12.match(descriptor1, descriptor2, matches);
//绘制关键点
cv::Mat imgMatch;
cv::drawMatches(srcImg1, keyPoint1, srcImg2, keyPoint2, matches, imgMatch);
cv::namedWindow("匹配图", CV_WINDOW_AUTOSIZE);
cv::imshow("匹配图", imgMatch);
cv::imwrite("匹配图.jpg", imgMatch);
cv::waitKey(10);
return 0;
}
来源:https://blog.csdn.net/weixin_36368407/article/details/53056720


猜你喜欢
- 作者是一名沉迷于Python无法自拔的蛇友,为提高水平,把Python的重点和有趣的实例发在简书上。一、递归是指函数/过程/子程序在运行过程
- 例子:def re_escape(fn): def arg_escaped(this, *args):&
- 我们以用户查询语句为 https://www.aspxhome.com/chunfeng.asp为例来查询用户资料将从数据库Contact1
- 背景形态学处理方法是基于对二进制图像进行处理的,卷积核决定图像处理后的效果;形态学的处理哦本质上相当于对图像做前处理,提取出有用的特征,以便
- 需求背景:进行分值计算。如下图,如果只是一两个还好说,写写判断,但是如果有几十个,几百个,会不会惨不忍睹。而且,下面的还是三种情况。例如:解
- 在正式编写爬虫案例前,先对 scrapy 进行一下系统的学习。scrapy 安装与简单运行使用命令 pip install scrapy 进
- asp ajax json教程首先用ACCESS建json.mdb的库,然后建一个表t_jsontable,字段如下:jt_id,jt_na
- 本文实例讲述了Python使用add_subplot与subplot画子图操作。分享给大家供大家参考,具体如下:子图:就是在一张figure
- 前言在跑模型的时候,遇到如下报错UserWarning: To copy construct from a tensor, it is re
- 迭代dict的key和value我们了解了如何迭代 dict 的key和value,那么,在一个 for 循环中,能否同时迭代 key和va
- Python 截取字符串使用 变量[头下标:尾下标],就可以截取相应的字符串,其中下标是从0开始算起,可以是正数或负数,下标可以为空表示取到
- 技术背景在前面一篇博客中我们介绍过关于python的表格数据处理方案,这其中的工作重点就是对表格类型的数据进行梳理、计算和展示,本文重点介绍
- 摘要: 前端框架 Bootstrap 的模态对话框,可以使用 remote 选项指定一个 URL,这样对话框在第一次弹出的时候就会自动从这个
- 本文实例讲述了Python基于回溯法子集树模板解决旅行商问题(TSP)。分享给大家供大家参考,具体如下:问题旅行商问题(Traveling
- 使用 vue-cli构建的项目,在 默认情况下 ,执行 npm run build 会将所有的js代码打包为一个整体,打包位置是
- 一、概述OLAP的系统(即Online Aanalyse Process)一般用于系统决策使用。通常和数据仓库、数据分析、数据挖掘等概念联系
- 将视频中的音频分离出来简单介绍使用python将音频从视频当中分离出来,形成一个mp3格式的音乐。使用环境和模块1.python 3.72.
- 在python中我们可以使用speech模块让计算机进行语音输出,我们需要使用如下代码安装该模块。对于如何在终端中安装python相应模块,
- 1 停机方案发布公告停止服务离线数据迁移(拆分,重新分配数据)数据校验更改配置恢复服务回滚预案2 停写方案支持读写分离升级公告中断写操作,隔
- 1、PHP中的抽象类PHP 5 支持抽象类和抽象方法。定义为抽象的类不能被实例化。任何一个类,如果它里面至少有一个方法是被声明为抽象的,那么