网络编程
位置:首页>> 网络编程>> Python编程>> Python实现我的世界小游戏源代码

Python实现我的世界小游戏源代码

作者:Python代码狂人  发布时间:2023-07-26 02:09:08 

标签:Python,小游戏,源代码

我的世界小游戏使用方法:

移动

前进:W,后退:S,向左:A,向右:D,环顾四周:鼠标,跳起:空格键,切换飞行模式:Tab;

选择建筑材料

砖:1,草:2,沙子:3,删除建筑:鼠标左键单击,创建建筑块:鼠标右键单击

ESC退出程序。

完整程序包请通过文末地址下载,程序运行截图如下:

Python实现我的世界小游戏源代码


from __future__ import division

import sys
import math
import random
import time

from collections import deque
from pyglet import image
from pyglet.gl import *
from pyglet.graphics import TextureGroup
from pyglet.window import key, mouse

TICKS_PER_SEC = 60

# Size of sectors used to ease block loading.
SECTOR_SIZE = 16

WALKING_SPEED = 5
FLYING_SPEED = 15

GRAVITY = 20.0
MAX_JUMP_HEIGHT = 1.0 # About the height of a block.
# To derive the formula for calculating jump speed, first solve
#  v_t = v_0 + a * t
# for the time at which you achieve maximum height, where a is the acceleration
# due to gravity and v_t = 0. This gives:
#  t = - v_0 / a
# Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in
#  s = s_0 + v_0 * t + (a * t^2) / 2
JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
TERMINAL_VELOCITY = 50

PLAYER_HEIGHT = 2

if sys.version_info[0] >= 3:
 xrange = range

def cube_vertices(x, y, z, n):
 """ Return the vertices of the cube at position x, y, z with size 2*n.

"""
 return [
   x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n, # top
   x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n, # bottom
   x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n, # left
   x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n, # right
   x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n, # front
   x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n, # back
 ]

def tex_coord(x, y, n=4):
 """ Return the bounding vertices of the texture square.

"""
 m = 1.0 / n
 dx = x * m
 dy = y * m
 return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m

def tex_coords(top, bottom, side):
 """ Return a list of the texture squares for the top, bottom and side.

"""
 top = tex_coord(*top)
 bottom = tex_coord(*bottom)
 side = tex_coord(*side)
 result = []
 result.extend(top)
 result.extend(bottom)
 result.extend(side * 4)
 return result

TEXTURE_PATH = 'texture.png'

GRASS = tex_coords((1, 0), (0, 1), (0, 0))
SAND = tex_coords((1, 1), (1, 1), (1, 1))
BRICK = tex_coords((2, 0), (2, 0), (2, 0))
STONE = tex_coords((2, 1), (2, 1), (2, 1))

FACES = [
 ( 0, 1, 0),
 ( 0,-1, 0),
 (-1, 0, 0),
 ( 1, 0, 0),
 ( 0, 0, 1),
 ( 0, 0,-1),
]

def normalize(position):
 """ Accepts `position` of arbitrary precision and returns the block
 containing that position.

Parameters
 ----------
 position : tuple of len 3

Returns
 -------
 block_position : tuple of ints of len 3

"""
 x, y, z = position
 x, y, z = (int(round(x)), int(round(y)), int(round(z)))
 return (x, y, z)

def sectorize(position):
 """ Returns a tuple representing the sector for the given `position`.

Parameters
 ----------
 position : tuple of len 3

Returns
 -------
 sector : tuple of len 3

"""
 x, y, z = normalize(position)
 x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
 return (x, 0, z)

class Model(object):

def __init__(self):

# A Batch is a collection of vertex lists for batched rendering.
   self.batch = pyglet.graphics.Batch()

# A TextureGroup manages an OpenGL texture.
   self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())

# A mapping from position to the texture of the block at that position.
   # This defines all the blocks that are currently in the world.
   self.world = {}

# Same mapping as `world` but only contains blocks that are shown.
   self.shown = {}

# Mapping from position to a pyglet `VertextList` for all shown blocks.
   self._shown = {}

# Mapping from sector to a list of positions inside that sector.
   self.sectors = {}

# Simple function queue implementation. The queue is populated with
   # _show_block() and _hide_block() calls
   self.queue = deque()

self._initialize()

def _initialize(self):
   """ Initialize the world by placing all the blocks.

"""
   n = 80 # 1/2 width and height of world
   s = 1 # step size
   y = 0 # initial y height
   for x in xrange(-n, n + 1, s):
     for z in xrange(-n, n + 1, s):
       # create a layer stone an grass everywhere.
       self.add_block((x, y - 2, z), GRASS, immediate=False)
       self.add_block((x, y - 3, z), STONE, immediate=False)
       if x in (-n, n) or z in (-n, n):
         # create outer walls.
         for dy in xrange(-2, 3):
           self.add_block((x, y + dy, z), STONE, immediate=False)

# generate the hills randomly
   o = n - 10
   for _ in xrange(120):
     a = random.randint(-o, o) # x position of the hill
     b = random.randint(-o, o) # z position of the hill
     c = -1 # base of the hill
     h = random.randint(1, 6) # height of the hill
     s = random.randint(4, 8) # 2 * s is the side length of the hill
     d = 1 # how quickly to taper off the hills
     t = random.choice([GRASS, SAND, BRICK])
     for y in xrange(c, c + h):
       for x in xrange(a - s, a + s + 1):
         for z in xrange(b - s, b + s + 1):
           if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
             continue
           if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
             continue
           self.add_block((x, y, z), t, immediate=False)
       s -= d # decrement side lenth so hills taper off

def hit_test(self, position, vector, max_distance=8):
   """ Line of sight search from current position. If a block is
   intersected it is returned, along with the block previously in the line
   of sight. If no block is found, return None, None.

Parameters
   ----------
   position : tuple of len 3
     The (x, y, z) position to check visibility from.
   vector : tuple of len 3
     The line of sight vector.
   max_distance : int
     How many blocks away to search for a hit.

"""
   m = 8
   x, y, z = position
   dx, dy, dz = vector
   previous = None
   for _ in xrange(max_distance * m):
     key = normalize((x, y, z))
     if key != previous and key in self.world:
       return key, previous
     previous = key
     x, y, z = x + dx / m, y + dy / m, z + dz / m
   return None, None

def exposed(self, position):
   """ Returns False is given `position` is surrounded on all 6 sides by
   blocks, True otherwise.

"""
   x, y, z = position
   for dx, dy, dz in FACES:
     if (x + dx, y + dy, z + dz) not in self.world:
       return True
   return False

def add_block(self, position, texture, immediate=True):
   """ Add a block with the given `texture` and `position` to the world.

Parameters
   ----------
   position : tuple of len 3
     The (x, y, z) position of the block to add.
   texture : list of len 3
     The coordinates of the texture squares. Use `tex_coords()` to
     generate.
   immediate : bool
     Whether or not to draw the block immediately.

"""
   if position in self.world:
     self.remove_block(position, immediate)
   self.world[position] = texture
   self.sectors.setdefault(sectorize(position), []).append(position)
   if immediate:
     if self.exposed(position):
       self.show_block(position)
     self.check_neighbors(position)

def remove_block(self, position, immediate=True):
   """ Remove the block at the given `position`.

Parameters
   ----------
   position : tuple of len 3
     The (x, y, z) position of the block to remove.
   immediate : bool
     Whether or not to immediately remove block from canvas.

"""
   del self.world[position]
   self.sectors[sectorize(position)].remove(position)
   if immediate:
     if position in self.shown:
       self.hide_block(position)
     self.check_neighbors(position)

def check_neighbors(self, position):
   """ Check all blocks surrounding `position` and ensure their visual
   state is current. This means hiding blocks that are not exposed and
   ensuring that all exposed blocks are shown. Usually used after a block
   is added or removed.

"""
   x, y, z = position
   for dx, dy, dz in FACES:
     key = (x + dx, y + dy, z + dz)
     if key not in self.world:
       continue
     if self.exposed(key):
       if key not in self.shown:
         self.show_block(key)
     else:
       if key in self.shown:
         self.hide_block(key)

def show_block(self, position, immediate=True):
   """ Show the block at the given `position`. This method assumes the
   block has already been added with add_block()

Parameters
   ----------
   position : tuple of len 3
     The (x, y, z) position of the block to show.
   immediate : bool
     Whether or not to show the block immediately.

"""
   texture = self.world[position]
   self.shown[position] = texture
   if immediate:
     self._show_block(position, texture)
   else:
     self._enqueue(self._show_block, position, texture)

def _show_block(self, position, texture):
   """ Private implementation of the `show_block()` method.

Parameters
   ----------
   position : tuple of len 3
     The (x, y, z) position of the block to show.
   texture : list of len 3
     The coordinates of the texture squares. Use `tex_coords()` to
     generate.

"""
   x, y, z = position
   vertex_data = cube_vertices(x, y, z, 0.5)
   texture_data = list(texture)
   # create vertex list
   # FIXME Maybe `add_indexed()` should be used instead
   self._shown[position] = self.batch.add(24, GL_QUADS, self.group,
     ('v3f/static', vertex_data),
     ('t2f/static', texture_data))

def hide_block(self, position, immediate=True):
   """ Hide the block at the given `position`. Hiding does not remove the
   block from the world.

Parameters
   ----------
   position : tuple of len 3
     The (x, y, z) position of the block to hide.
   immediate : bool
     Whether or not to immediately remove the block from the canvas.

"""
   self.shown.pop(position)
   if immediate:
     self._hide_block(position)
   else:
     self._enqueue(self._hide_block, position)

def _hide_block(self, position):
   """ Private implementation of the 'hide_block()` method.

"""
   self._shown.pop(position).delete()

def show_sector(self, sector):
   """ Ensure all blocks in the given sector that should be shown are
   drawn to the canvas.

"""
   for position in self.sectors.get(sector, []):
     if position not in self.shown and self.exposed(position):
       self.show_block(position, False)

def hide_sector(self, sector):
   """ Ensure all blocks in the given sector that should be hidden are
   removed from the canvas.

"""
   for position in self.sectors.get(sector, []):
     if position in self.shown:
       self.hide_block(position, False)

def change_sectors(self, before, after):
   """ Move from sector `before` to sector `after`. A sector is a
   contiguous x, y sub-region of world. Sectors are used to speed up
   world rendering.

"""
   before_set = set()
   after_set = set()
   pad = 4
   for dx in xrange(-pad, pad + 1):
     for dy in [0]: # xrange(-pad, pad + 1):
       for dz in xrange(-pad, pad + 1):
         if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
           continue
         if before:
           x, y, z = before
           before_set.add((x + dx, y + dy, z + dz))
         if after:
           x, y, z = after
           after_set.add((x + dx, y + dy, z + dz))
   show = after_set - before_set
   hide = before_set - after_set
   for sector in show:
     self.show_sector(sector)
   for sector in hide:
     self.hide_sector(sector)

def _enqueue(self, func, *args):
   """ Add `func` to the internal queue.

"""
   self.queue.append((func, args))

def _dequeue(self):
   """ Pop the top function from the internal queue and call it.

"""
   func, args = self.queue.popleft()
   func(*args)

def process_queue(self):
   """ Process the entire queue while taking periodic breaks. This allows
   the game loop to run smoothly. The queue contains calls to
   _show_block() and _hide_block() so this method should be called if
   add_block() or remove_block() was called with immediate=False

"""
   start = time.perf_counter()
   while self.queue and time.time()- start < 1.0 / TICKS_PER_SEC:
     self._dequeue()

def process_entire_queue(self):
   """ Process the entire queue with no breaks.

"""
   while self.queue:
     self._dequeue()

class Window(pyglet.window.Window):

def __init__(self, *args, **kwargs):
   super(Window, self).__init__(*args, **kwargs)

# Whether or not the window exclusively captures the mouse.
   self.exclusive = False

# When flying gravity has no effect and speed is increased.
   self.flying = False

# Strafing is moving lateral to the direction you are facing,
   # e.g. moving to the left or right while continuing to face forward.
   #
   # First element is -1 when moving forward, 1 when moving back, and 0
   # otherwise. The second element is -1 when moving left, 1 when moving
   # right, and 0 otherwise.
   self.strafe = [0, 0]

# Current (x, y, z) position in the world, specified with floats. Note
   # that, perhaps unlike in math class, the y-axis is the vertical axis.
   self.position = (0, 0, 0)

# First element is rotation of the player in the x-z plane (ground
   # plane) measured from the z-axis down. The second is the rotation
   # angle from the ground plane up. Rotation is in degrees.
   #
   # The vertical plane rotation ranges from -90 (looking straight down) to
   # 90 (looking straight up). The horizontal rotation range is unbounded.
   self.rotation = (0, 0)

# Which sector the player is currently in.
   self.sector = None

# The crosshairs at the center of the screen.
   self.reticle = None

# Velocity in the y (upward) direction.
   self.dy = 0

# A list of blocks the player can place. Hit num keys to cycle.
   self.inventory = [BRICK, GRASS, SAND]

# The current block the user can place. Hit num keys to cycle.
   self.block = self.inventory[0]

# Convenience list of num keys.
   self.num_keys = [
     key._1, key._2, key._3, key._4, key._5,
     key._6, key._7, key._8, key._9, key._0]

# Instance of the model that handles the world.
   self.model = Model()

# The label that is displayed in the top left of the canvas.
   self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
     x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
     color=(0, 0, 0, 255))

# This call schedules the `update()` method to be called
   # TICKS_PER_SEC. This is the main game event loop.
   pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)

def set_exclusive_mouse(self, exclusive):
   """ If `exclusive` is True, the game will capture the mouse, if False
   the game will ignore the mouse.

"""
   super(Window, self).set_exclusive_mouse(exclusive)
   self.exclusive = exclusive

def get_sight_vector(self):
   """ Returns the current line of sight vector indicating the direction
   the player is looking.

"""
   x, y = self.rotation
   # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
   # is 1 when looking ahead parallel to the ground and 0 when looking
   # straight up or down.
   m = math.cos(math.radians(y))
   # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
   # looking straight up.
   dy = math.sin(math.radians(y))
   dx = math.cos(math.radians(x - 90)) * m
   dz = math.sin(math.radians(x - 90)) * m
   return (dx, dy, dz)

def get_motion_vector(self):
   """ Returns the current motion vector indicating the velocity of the
   player.

Returns
   -------
   vector : tuple of len 3
     Tuple containing the velocity in x, y, and z respectively.

"""
   if any(self.strafe):
     x, y = self.rotation
     strafe = math.degrees(math.atan2(*self.strafe))
     y_angle = math.radians(y)
     x_angle = math.radians(x + strafe)
     if self.flying:
       m = math.cos(y_angle)
       dy = math.sin(y_angle)
       if self.strafe[1]:
         # Moving left or right.
         dy = 0.0
         m = 1
       if self.strafe[0] > 0:
         # Moving backwards.
         dy *= -1
       # When you are flying up or down, you have less left and right
       # motion.
       dx = math.cos(x_angle) * m
       dz = math.sin(x_angle) * m
     else:
       dy = 0.0
       dx = math.cos(x_angle)
       dz = math.sin(x_angle)
   else:
     dy = 0.0
     dx = 0.0
     dz = 0.0
   return (dx, dy, dz)

def update(self, dt):
   """ This method is scheduled to be called repeatedly by the pyglet
   clock.

Parameters
   ----------
   dt : float
     The change in time since the last call.

"""
   self.model.process_queue()
   sector = sectorize(self.position)
   if sector != self.sector:
     self.model.change_sectors(self.sector, sector)
     if self.sector is None:
       self.model.process_entire_queue()
     self.sector = sector
   m = 8
   dt = min(dt, 0.2)
   for _ in xrange(m):
     self._update(dt / m)

def _update(self, dt):
   """ Private implementation of the `update()` method. This is where most
   of the motion logic lives, along with gravity and collision detection.

Parameters
   ----------
   dt : float
     The change in time since the last call.

"""
   # walking
   speed = FLYING_SPEED if self.flying else WALKING_SPEED
   d = dt * speed # distance covered this tick.
   dx, dy, dz = self.get_motion_vector()
   # New position in space, before accounting for gravity.
   dx, dy, dz = dx * d, dy * d, dz * d
   # gravity
   if not self.flying:
     # Update your vertical speed: if you are falling, speed up until you
     # hit terminal velocity; if you are jumping, slow down until you
     # start falling.
     self.dy -= dt * GRAVITY
     self.dy = max(self.dy, -TERMINAL_VELOCITY)
     dy += self.dy * dt
   # collisions
   x, y, z = self.position
   x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
   self.position = (x, y, z)

def collide(self, position, height):
   """ Checks to see if the player at the given `position` and `height`
   is colliding with any blocks in the world.

Parameters
   ----------
   position : tuple of len 3
     The (x, y, z) position to check for collisions at.
   height : int or float
     The height of the player.

Returns
   -------
   position : tuple of len 3
     The new position of the player taking into account collisions.

"""
   # How much overlap with a dimension of a surrounding block you need to
   # have to count as a collision. If 0, touching terrain at all counts as
   # a collision. If .49, you sink into the ground, as if walking through
   # tall grass. If >= .5, you'll fall through the ground.
   pad = 0.25
   p = list(position)
   np = normalize(position)
   for face in FACES: # check all surrounding blocks
     for i in xrange(3): # check each dimension independently
       if not face[i]:
         continue
       # How much overlap you have with this dimension.
       d = (p[i] - np[i]) * face[i]
       if d < pad:
         continue
       for dy in xrange(height): # check each height
         op = list(np)
         op[1] -= dy
         op[i] += face[i]
         if tuple(op) not in self.model.world:
           continue
         p[i] -= (d - pad) * face[i]
         if face == (0, -1, 0) or face == (0, 1, 0):
           # You are colliding with the ground or ceiling, so stop
           # falling / rising.
           self.dy = 0
         break
   return tuple(p)

def on_mouse_press(self, x, y, button, modifiers):
   """ Called when a mouse button is pressed. See pyglet docs for button
   amd modifier mappings.

Parameters
   ----------
   x, y : int
     The coordinates of the mouse click. Always center of the screen if
     the mouse is captured.
   button : int
     Number representing mouse button that was clicked. 1 = left button,
     4 = right button.
   modifiers : int
     Number representing any modifying keys that were pressed when the
     mouse button was clicked.

"""
   if self.exclusive:
     vector = self.get_sight_vector()
     block, previous = self.model.hit_test(self.position, vector)
     if (button == mouse.RIGHT) or \
         ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
       # ON OSX, control + left click = right click.
       if previous:
         self.model.add_block(previous, self.block)
     elif button == pyglet.window.mouse.LEFT and block:
       texture = self.model.world[block]
       if texture != STONE:
         self.model.remove_block(block)
   else:
     self.set_exclusive_mouse(True)

def on_mouse_motion(self, x, y, dx, dy):
   """ Called when the player moves the mouse.

Parameters
   ----------
   x, y : int
     The coordinates of the mouse click. Always center of the screen if
     the mouse is captured.
   dx, dy : float
     The movement of the mouse.

"""
   if self.exclusive:
     m = 0.15
     x, y = self.rotation
     x, y = x + dx * m, y + dy * m
     y = max(-90, min(90, y))
     self.rotation = (x, y)

def on_key_press(self, symbol, modifiers):
   """ Called when the player presses a key. See pyglet docs for key
   mappings.

Parameters
   ----------
   symbol : int
     Number representing the key that was pressed.
   modifiers : int
     Number representing any modifying keys that were pressed.

"""
   if symbol == key.W:
     self.strafe[0] -= 1
   elif symbol == key.S:
     self.strafe[0] += 1
   elif symbol == key.A:
     self.strafe[1] -= 1
   elif symbol == key.D:
     self.strafe[1] += 1
   elif symbol == key.SPACE:
     if self.dy == 0:
       self.dy = JUMP_SPEED
   elif symbol == key.ESCAPE:
     self.set_exclusive_mouse(False)
   elif symbol == key.TAB:
     self.flying = not self.flying
   elif symbol in self.num_keys:
     index = (symbol - self.num_keys[0]) % len(self.inventory)
     self.block = self.inventory[index]

def on_key_release(self, symbol, modifiers):
   """ Called when the player releases a key. See pyglet docs for key
   mappings.

Parameters
   ----------
   symbol : int
     Number representing the key that was pressed.
   modifiers : int
     Number representing any modifying keys that were pressed.

"""
   if symbol == key.W:
     self.strafe[0] += 1
   elif symbol == key.S:
     self.strafe[0] -= 1
   elif symbol == key.A:
     self.strafe[1] += 1
   elif symbol == key.D:
     self.strafe[1] -= 1

def on_resize(self, width, height):
   """ Called when the window is resized to a new `width` and `height`.

"""
   # label
   self.label.y = height - 10
   # reticle
   if self.reticle:
     self.reticle.delete()
   x, y = self.width // 2, self.height // 2
   n = 10
   self.reticle = pyglet.graphics.vertex_list(4,
     ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
   )

def set_2d(self):
   """ Configure OpenGL to draw in 2d.

"""
   width, height = self.get_size()
   glDisable(GL_DEPTH_TEST)
   viewport = self.get_viewport_size()
   glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
   glMatrixMode(GL_PROJECTION)
   glLoadIdentity()
   glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
   glMatrixMode(GL_MODELVIEW)
   glLoadIdentity()

def set_3d(self):
   """ Configure OpenGL to draw in 3d.

"""
   width, height = self.get_size()
   glEnable(GL_DEPTH_TEST)
   viewport = self.get_viewport_size()
   glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
   glMatrixMode(GL_PROJECTION)
   glLoadIdentity()
   gluPerspective(65.0, width / float(height), 0.1, 60.0)
   glMatrixMode(GL_MODELVIEW)
   glLoadIdentity()
   x, y = self.rotation
   glRotatef(x, 0, 1, 0)
   glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
   x, y, z = self.position
   glTranslatef(-x, -y, -z)

def on_draw(self):
   """ Called by pyglet to draw the canvas.

"""
   self.clear()
   self.set_3d()
   glColor3d(1, 1, 1)
   self.model.batch.draw()
   self.draw_focused_block()
   self.set_2d()
   self.draw_label()
   self.draw_reticle()

def draw_focused_block(self):
   """ Draw black edges around the block that is currently under the
   crosshairs.

"""
   vector = self.get_sight_vector()
   block = self.model.hit_test(self.position, vector)[0]
   if block:
     x, y, z = block
     vertex_data = cube_vertices(x, y, z, 0.51)
     glColor3d(0, 0, 0)
     glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
     pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
     glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

def draw_label(self):
   """ Draw the label in the top left of the screen.

"""
   x, y, z = self.position
   self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
     pyglet.clock.get_fps(), x, y, z,
     len(self.model._shown), len(self.model.world))
   self.label.draw()

def draw_reticle(self):
   """ Draw the crosshairs in the center of the screen.

"""
   glColor3d(0, 0, 0)
   self.reticle.draw(GL_LINES)

def setup_fog():
 """ Configure the OpenGL fog properties.

"""
 # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's
 # post-texturing color."
 glEnable(GL_FOG)
 # Set the fog color.
 glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1))
 # Say we have no preference between rendering speed and quality.
 glHint(GL_FOG_HINT, GL_DONT_CARE)
 # Specify the equation used to compute the blending factor.
 glFogi(GL_FOG_MODE, GL_LINEAR)
 # How close and far away fog starts and ends. The closer the start and end,
 # the denser the fog in the fog range.
 glFogf(GL_FOG_START, 20.0)
 glFogf(GL_FOG_END, 60.0)

def setup():
 """ Basic OpenGL configuration.

"""
 # Set the color of "clear", i.e. the sky, in rgba.
 glClearColor(0.5, 0.69, 1.0, 1)
 # Enable culling (not rendering) of back-facing facets -- facets that aren't
 # visible to you.
 glEnable(GL_CULL_FACE)
 # Set the texture minification/magnification function to GL_NEAREST (nearest
 # in Manhattan distance) to the specified texture coordinates. GL_NEAREST
 # "is generally faster than GL_LINEAR, but it can produce textured 图片
 # with sharper edges because the transition between texture elements is not
 # as smooth."
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
 setup_fog()

def main():
 window = Window(width=1800, height=1600, caption='Pyglet', resizable=True)
 # Hide the mouse cursor and prevent the mouse from leaving the window.
 window.set_exclusive_mouse(True)
 setup()
 pyglet.app.run()

if __name__ == '__main__':
 main()

我的世界小游戏python源代码包下载地址:

链接: https://pan.baidu.com/s/1gKAheRzAeNmRXgSU-A4PPg

提取码: rya9

来源:https://blog.csdn.net/weixin_42756970/article/details/111953383

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com