网络编程
位置:首页>> 网络编程>> Python编程>> python tensorflow学习之识别单张图片的实现的示例

python tensorflow学习之识别单张图片的实现的示例

作者:我拿buff  发布时间:2023-06-30 21:11:32 

标签:python,tensorflow,识别图片

假设我们已经安装好了tensorflow。

一般在安装好tensorflow后,都会跑它的demo,而最常见的demo就是手写数字识别的demo,也就是mnist数据集。

然而我们仅仅是跑了它的demo而已,可能很多人会有和我一样的想法,如果拿来一张数字图片,如何应用我们训练的网络模型来识别出来,下面我们就以mnist的demo来实现它。

1.训练模型

首先我们要训练好模型,并且把模型model.ckpt保存到指定文件夹


saver = tf.train.Saver()  
saver.save(sess, "model_data/model.ckpt")

将以上两行代码加入到训练的代码中,训练完成后保存模型即可,如果这部分有问题,你可以百度查阅资料,tensorflow怎么保存训练模型,在这里我们就不罗嗦了。

2.测试模型

我们训练好模型后,将它保存在了model_data文件夹中,你会发现文件夹中出现了4个文件

python tensorflow学习之识别单张图片的实现的示例

然后,我们就可以对这个模型进行测试了,将待检测图片放在images文件夹下,执行


# -*- coding:utf-8 -*-  
import cv2
import tensorflow as tf
import numpy as np
from sys import path
path.append('../..')
from common import extract_mnist

#初始化单个卷积核上的参数
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

#初始化单个卷积核上的偏置值
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

#输入特征x,用卷积核W进行卷积运算,strides为卷积核移动步长,
#padding表示是否需要补齐边缘像素使输出图像大小不变
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

#对x进行最大池化操作,ksize进行池化的范围,
def max_pool_2x2(x):
 return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],strides=[1, 2, 2, 1], padding='SAME')

def main():

#定义会话
 sess = tf.InteractiveSession()

#声明输入图片数据,类别
 x = tf.placeholder('float',[None,784])
 x_img = tf.reshape(x , [-1,28,28,1])

W_conv1 = weight_variable([5, 5, 1, 32])
 b_conv1 = bias_variable([32])
 W_conv2 = weight_variable([5,5,32,64])
 b_conv2 = bias_variable([64])
 W_fc1 = weight_variable([7*7*64,1024])
 b_fc1 = bias_variable([1024])
 W_fc2 = weight_variable([1024,10])
 b_fc2 = bias_variable([10])

saver = tf.train.Saver(write_version=tf.train.SaverDef.V1)  
 saver.restore(sess , 'model_data/model.ckpt')

#进行卷积操作,并添加relu激活函数
 h_conv1 = tf.nn.relu(conv2d(x_img,W_conv1) + b_conv1)
 #进行最大池化
 h_pool1 = max_pool_2x2(h_conv1)

#同理第二层卷积层
 h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
 h_pool2 = max_pool_2x2(h_conv2)

#将卷积的产出展开
 h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
 #神经网络计算,并添加relu激活函数
 h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1) + b_fc1)

#输出层,使用softmax进行多分类
 y_conv=tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)

# mnist_data_set = extract_mnist.MnistDataSet('../../data/')
 # x_img , y = mnist_data_set.next_train_batch(1)
 im = cv2.imread('images/888.jpg',cv2.IMREAD_GRAYSCALE).astype(np.float32)
 im = cv2.resize(im,(28,28),interpolation=cv2.INTER_CUBIC)
 #图片预处理
 #img_gray = cv2.cvtColor(im , cv2.COLOR_BGR2GRAY).astype(np.float32)
 #数据从0~255转为-0.5~0.5
 img_gray = (im - (255 / 2.0)) / 255
 #cv2.imshow('out',img_gray)
 #cv2.waitKey(0)
 x_img = np.reshape(img_gray , [-1 , 784])

print x_img
 output = sess.run(y_conv , feed_dict = {x:x_img})
 print 'the y_con :  ', '\n',output
 print 'the predict is : ', np.argmax(output)

#关闭会话
 sess.close()

if __name__ == '__main__':
 main()

ok,贴一下效果图

python tensorflow学习之识别单张图片的实现的示例

输出:

python tensorflow学习之识别单张图片的实现的示例

最后再贴一个cifar10的,感觉我的输入数据有点问题,因为直接读cifar10的数据测试是没问题的,但是换成自己的图片做预处理后输入结果就有问题,(参考:cv2读入的数据是BGR顺序,PIL读入的数据是RGB顺序,cifar10的数据是RGB顺序),哪位童鞋能指出来记得留言告诉我


# -*- coding:utf-8 -*-  
from sys import path
import numpy as np
import tensorflow as tf
import time
import cv2
from PIL import Image
path.append('../..')
from common import extract_cifar10
from common import inspect_image

#初始化单个卷积核上的参数
def weight_variable(shape):
 initial = tf.truncated_normal(shape, stddev=0.1)
 return tf.Variable(initial)

#初始化单个卷积核上的偏置值
def bias_variable(shape):
 initial = tf.constant(0.1, shape=shape)
 return tf.Variable(initial)

#卷积操作
def conv2d(x, W):
 return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

def main():
 #定义会话
 sess = tf.InteractiveSession()

#声明输入图片数据,类别
 x = tf.placeholder('float',[None,32,32,3])
 y_ = tf.placeholder('float',[None,10])

#第一层卷积层
 W_conv1 = weight_variable([5, 5, 3, 64])
 b_conv1 = bias_variable([64])
 #进行卷积操作,并添加relu激活函数
 conv1 = tf.nn.relu(conv2d(x,W_conv1) + b_conv1)
 # pool1
 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],padding='SAME', name='pool1')
 # norm1
 norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,name='norm1')

#第二层卷积层
 W_conv2 = weight_variable([5,5,64,64])
 b_conv2 = bias_variable([64])
 conv2 = tf.nn.relu(conv2d(norm1,W_conv2) + b_conv2)
 # norm2
 norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,name='norm2')
 # pool2
 pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],strides=[1, 2, 2, 1], padding='SAME', name='pool2')

#全连接层
 #权值参数
 W_fc1 = weight_variable([8*8*64,384])
 #偏置值
 b_fc1 = bias_variable([384])
 #将卷积的产出展开
 pool2_flat = tf.reshape(pool2,[-1,8*8*64])
 #神经网络计算,并添加relu激活函数
 fc1 = tf.nn.relu(tf.matmul(pool2_flat,W_fc1) + b_fc1)

#全连接第二层
 #权值参数
 W_fc2 = weight_variable([384,192])
 #偏置值
 b_fc2 = bias_variable([192])
 #神经网络计算,并添加relu激活函数
 fc2 = tf.nn.relu(tf.matmul(fc1,W_fc2) + b_fc2)

#输出层,使用softmax进行多分类
 W_fc2 = weight_variable([192,10])
 b_fc2 = bias_variable([10])
 y_conv=tf.maximum(tf.nn.softmax(tf.matmul(fc2, W_fc2) + b_fc2),1e-30)

#
 saver = tf.train.Saver()
 saver.restore(sess , 'model_data/model.ckpt')
 #input
 im = Image.open('images/dog8.jpg')
 im.show()
 im = im.resize((32,32))
 # r , g , b = im.split()
 # im = Image.merge("RGB" , (r,g,b))
 print im.size , im.mode

im = np.array(im).astype(np.float32)
 im = np.reshape(im , [-1,32*32*3])
 im = (im - (255 / 2.0)) / 255
 batch_xs = np.reshape(im , [-1,32,32,3])
 #print batch_xs
 #获取cifar10数据
 # cifar10_data_set = extract_cifar10.Cifar10DataSet('../../data/')
 # batch_xs, batch_ys = cifar10_data_set.next_train_batch(1)
 # print batch_ys
 output = sess.run(y_conv , feed_dict={x:batch_xs})
 print output
 print 'the out put is :' , np.argmax(output)
 #关闭会话
 sess.close()

if __name__ == '__main__':
 main()

来源:http://blog.csdn.net/gaohuazhao/article/details/72886450

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com