网络编程
位置:首页>> 网络编程>> Python编程>> PyTorch一小时掌握之图像识别实战篇

PyTorch一小时掌握之图像识别实战篇

作者:我是小白呀  发布时间:2023-01-28 00:08:01 

标签:PyTorch,图像识别,Python

概述

今天我们要来做一个进阶的花分类问题. 不同于之前做过的鸢尾花, 这次我们会分析 102 中不同的花. 是不是很上头呀.

预处理

导包

常规操作, 没什么好解释的. 缺模块的同学自行pip -install.


import numpy as np
import time
from matplotlib import pyplot as plt
import json
import copy
import os
import torch
from torch import nn
from torch import optim
from torchvision import transforms, models, datasets

数据读取与预处理

数据预处理部分:
数据增强: torchvision 中 transforms 模块自带功能, 用于扩充数据样本
数据预处理: torchvision 中 transforms 也帮我们实现好了
数据分批: DataLoader 模块直接读取 batch 数据


# ----------------1. 数据读取与预处理------------------

# 路径
data_dir = './flower_data/'
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'

# 制作数据源
data_transforms = {
   'train': transforms.Compose([transforms.RandomRotation(45),  #随机旋转,-45到45度之间随机选
       transforms.CenterCrop(224),  #从中心开始裁剪
       transforms.RandomHorizontalFlip(p=0.5),  #随机水平翻转 选择一个概率概率
       transforms.RandomVerticalFlip(p=0.5),  #随机垂直翻转
       transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),  #参数1为亮度, 参数2为对比度,参数3为饱和度,参数4为色相
       transforms.RandomGrayscale(p=0.025),  #概率转换成灰度率, 3通道就是R=G=B
       transforms.ToTensor(),
       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])  #均值, 标准差
   ]),
   'valid': transforms.Compose([transforms.Resize(256),
       transforms.CenterCrop(224),
       transforms.ToTensor(),
       transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
   ]),
}

batch_size = 8

image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x]) for x in ['train', 'valid']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=batch_size, shuffle=True) for x in ['train', 'valid']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'valid']}
class_names = image_datasets['train'].classes

# 调试输出
print(image_datasets)
print(dataloaders)
print(dataset_sizes)
print(class_names)

# 读取标签对应的实际名字
with open('cat_to_name.json', 'r') as f:
   cat_to_name = json.load(f)

print(cat_to_name)

输出结果:
{'train': Dataset ImageFolder
Number of datapoints: 6552
Root location: ./flower_data/train
StandardTransform
Transform: Compose(
RandomRotation(degrees=(-45, 45), resample=False, expand=False)
CenterCrop(size=(224, 224))
RandomHorizontalFlip(p=0.5)
RandomVerticalFlip(p=0.5)
ColorJitter(brightness=[0.8, 1.2], contrast=[0.9, 1.1], saturation=[0.9, 1.1], hue=[-0.1, 0.1])
RandomGrayscale(p=0.025)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
), 'valid': Dataset ImageFolder
Number of datapoints: 818
Root location: ./flower_data/valid
StandardTransform
Transform: Compose(
Resize(size=256, interpolation=PIL.Image.BILINEAR)
CenterCrop(size=(224, 224))
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)}
{'train': <torch.utils.data.dataloader.DataLoader object at 0x000001B718A277F0>, 'valid': <torch.utils.data.dataloader.DataLoader object at 0x000001B718A27898>}
{'train': 6552, 'valid': 818}
['1', '10', '100', '101', '102', '11', '12', '13', '14', '15', '16', '17', '18', '19', '2', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '3', '30', '31', '32', '33', '34', '35', '36', '37', '38', '39', '4', '40', '41', '42', '43', '44', '45', '46', '47', '48', '49', '5', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '6', '60', '61', '62', '63', '64', '65', '66', '67', '68', '69', '7', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '8', '80', '81', '82', '83', '84', '85', '86', '87', '88', '89', '9', '90', '91', '92', '93', '94', '95', '96', '97', '98', '99']
{'21': 'fire lily', '3': 'canterbury bells', '45': 'bolero deep blue', '1': 'pink primrose', '34': 'mexican aster', '27': 'prince of wales feathers', '7': 'moon orchid', '16': 'globe-flower', '25': 'grape hyacinth', '26': 'corn poppy', '79': 'toad lily', '39': 'siam tulip', '24': 'red ginger', '67': 'spring crocus', '35': 'alpine sea holly', '32': 'garden phlox', '10': 'globe thistle', '6': 'tiger lily', '93': 'ball moss', '33': 'love in the mist', '9': 'monkshood', '102': 'blackberry lily', '14': 'spear thistle', '19': 'balloon flower', '100': 'blanket flower', '13': 'king protea', '49': 'oxeye daisy', '15': 'yellow iris', '61': 'cautleya spicata', '31': 'carnation', '64': 'silverbush', '68': 'bearded iris', '63': 'black-eyed susan', '69': 'windflower', '62': 'japanese anemone', '20': 'giant white arum lily', '38': 'great masterwort', '4': 'sweet pea', '86': 'tree mallow', '101': 'trumpet creeper', '42': 'daffodil', '22': 'pincushion flower', '2': 'hard-leaved pocket orchid', '54': 'sunflower', '66': 'osteospermum', '70': 'tree poppy', '85': 'desert-rose', '99': 'bromelia', '87': 'magnolia', '5': 'english marigold', '92': 'bee balm', '28': 'stemless gentian', '97': 'mallow', '57': 'gaura', '40': 'lenten rose', '47': 'marigold', '59': 'orange dahlia', '48': 'buttercup', '55': 'pelargonium', '36': 'ruby-lipped cattleya', '91': 'hippeastrum', '29': 'artichoke', '71': 'gazania', '90': 'canna lily', '18': 'peruvian lily', '98': 'mexican petunia', '8': 'bird of paradise', '30': 'sweet william', '17': 'purple coneflower', '52': 'wild pansy', '84': 'columbine', '12': "colt's foot", '11': 'snapdragon', '96': 'camellia', '23': 'fritillary', '50': 'common dandelion', '44': 'poinsettia', '53': 'primula', '72': 'azalea', '65': 'californian poppy', '80': 'anthurium', '76': 'morning glory', '37': 'cape flower', '56': 'bishop of llandaff', '60': 'pink-yellow dahlia', '82': 'clematis', '58': 'geranium', '75': 'thorn apple', '41': 'barbeton daisy', '95': 'bougainvillea', '43': 'sword lily', '83': 'hibiscus', '78': 'lotus lotus', '88': 'cyclamen', '94': 'foxglove', '81': 'frangipani', '74': 'rose', '89': 'watercress', '73': 'water lily', '46': 'wallflower', '77': 'passion flower', '51': 'petunia'}

数据可视化

虽然我也不知道这些都是什么花, 但是还是一起来看一下. 有知道的大佬可以评论区留个言.


# ----------------2. 展示下数据------------------
def im_convert(tensor):
   """ 展示数据"""

image = tensor.to("cpu").clone().detach()
   image = image.numpy().squeeze()
   image = image.transpose(1, 2, 0)
   image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
   image = image.clip(0, 1)

return image

def im_convert(tensor):
   """ 展示数据"""

image = tensor.to("cpu").clone().detach()
   image = image.numpy().squeeze()
   image = image.transpose(1, 2, 0)
   image = image * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
   image = image.clip(0, 1)

return image

fig=plt.figure(figsize=(20, 12))
columns = 4
rows = 2

dataiter = iter(dataloaders['valid'])
inputs, classes = dataiter.next()

for idx in range (columns*rows):
   ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
   ax.set_title(cat_to_name[str(int(class_names[classes[idx]]))])
   plt.imshow(im_convert(inputs[idx]))
plt.show()

输出结果:

PyTorch一小时掌握之图像识别实战篇

主体

加载参数


# ----------------3. 加载models中提供的模型------------------

# 直接使用训练好的权重当做初始化参数
model_name = "resnet"  # 可选的比较多 ['resnet', 'alexnet', 'vgg', 'squeezenet', 'densenet', 'inception']

# 是否使用人家训练好的特征来做
feature_extract = True

# 是否使用GPU训练
train_on_gpu = torch.cuda.is_available()

if not train_on_gpu:
   print('CUDA is not available.  Training on CPU ...')
else:
   print('CUDA is not available.  Training on CPU ...')

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

def set_parameter_requires_grad(model, feature_extracting):
   if feature_extracting:
       for param in model.parameters():
           param.requires_grad = False

model_ft = models.resnet152()
print(model_ft)

输出结果:
CUDA is not available. Training on CPU ...
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): Bottleneck(
(conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer2): Sequential(
(0): Bottleneck(
(conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(6): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(7): Bottleneck(
(conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer3): Sequential(
(0): Bottleneck(
(conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(3): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(4): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(5): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(6): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(7): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(8): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(9): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(10): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(11): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(12): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(13): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(14): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(15): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(16): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(17): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(18): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(19): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(20): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(21): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(22): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(23): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(24): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(25): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(26): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(27): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(28): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(29): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(30): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(31): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(32): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(33): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(34): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(35): Bottleneck(
(conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(layer4): Sequential(
(0): Bottleneck(
(conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(downsample): Sequential(
(0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
)
)
(1): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
(2): Bottleneck(
(conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
)
)
(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=2048, out_features=1000, bias=True)
)

建立模型


# ----------------4. 参考PyTorch官网例子------------------

def initialize_model(model_name, num_classes, feature_extract, use_pretrained=True):
   # 选择合适的模型,不同模型的初始化方法稍微有点区别
   model_ft = None
   input_size = 0

if model_name == "resnet":
       """ Resnet152
       """
       model_ft = models.resnet152(pretrained=use_pretrained)
       set_parameter_requires_grad(model_ft, feature_extract)
       num_ftrs = model_ft.fc.in_features
       model_ft.fc = nn.Sequential(nn.Linear(num_ftrs, 102),
                                  nn.LogSoftmax(dim=1))
       input_size = 224

elif model_name == "alexnet":
       """ Alexnet
       """
       model_ft = models.alexnet(pretrained=use_pretrained)
       set_parameter_requires_grad(model_ft, feature_extract)
       num_ftrs = model_ft.classifier[6].in_features
       model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
       input_size = 224

elif model_name == "vgg":
       """ VGG11_bn
       """
       model_ft = models.vgg16(pretrained=use_pretrained)
       set_parameter_requires_grad(model_ft, feature_extract)
       num_ftrs = model_ft.classifier[6].in_features
       model_ft.classifier[6] = nn.Linear(num_ftrs,num_classes)
       input_size = 224

elif model_name == "squeezenet":
       """ Squeezenet
       """
       model_ft = models.squeezenet1_0(pretrained=use_pretrained)
       set_parameter_requires_grad(model_ft, feature_extract)
       model_ft.classifier[1] = nn.Conv2d(512, num_classes, kernel_size=(1,1), stride=(1,1))
       model_ft.num_classes = num_classes
       input_size = 224

elif model_name == "densenet":
       """ Densenet
       """
       model_ft = models.densenet121(pretrained=use_pretrained)
       set_parameter_requires_grad(model_ft, feature_extract)
       num_ftrs = model_ft.classifier.in_features
       model_ft.classifier = nn.Linear(num_ftrs, num_classes)
       input_size = 224

elif model_name == "inception":
       """ Inception v3
       Be careful, expects (299,299) sized images and has auxiliary output
       """
       model_ft = models.inception_v3(pretrained=use_pretrained)
       set_parameter_requires_grad(model_ft, feature_extract)
       # Handle the auxilary net
       num_ftrs = model_ft.AuxLogits.fc.in_features
       model_ft.AuxLogits.fc = nn.Linear(num_ftrs, num_classes)
       # Handle the primary net
       num_ftrs = model_ft.fc.in_features
       model_ft.fc = nn.Linear(num_ftrs,num_classes)
       input_size = 299

else:
       print("Invalid model name, exiting...")
       exit()

return model_ft, input_size

设置哪些层需要训练


# ----------------5. 设置哪些层需要训练------------------

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)

# GPU计算
model_ft = model_ft.to(device)

# 模型保存
filename='checkpoint.pth'

# 是否训练所有层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract:
   params_to_update = []
   for name,param in model_ft.named_parameters():
       if param.requires_grad == True:
           params_to_update.append(param)
           print("\t",name)
else:
   for name,param in model_ft.named_parameters():
       if param.requires_grad == True:
           print("\t",name)

优化器设置


# ----------------6. 优化器设置------------------

# 优化器设置
optimizer_ft = optim.Adam(params_to_update, lr=1e-2)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)  # 学习率每7个epoch衰减成原来的1/10

# 最后一层已经LogSoftmax()了,所以不能nn.CrossEntropyLoss()来计算了
# nn.CrossEntropyLoss()相当于logSoftmax()和nn.NLLLoss()整合
criterion = nn.NLLLoss()

训练模块


# ----------------7. 训练模块------------------

def train_model(model, dataloaders, criterion, optimizer, num_epochs=25, is_inception=False, filename=filename):
   since = time.time()
   best_acc = 0
   """
   checkpoint = torch.load(filename)
   best_acc = checkpoint['best_acc']
   model.load_state_dict(checkpoint['state_dict'])
   optimizer.load_state_dict(checkpoint['optimizer'])
   model.class_to_idx = checkpoint['mapping']
   """
   model.to(device)

val_acc_history = []
   train_acc_history = []
   train_losses = []
   valid_losses = []
   LRs = [optimizer.param_groups[0]['lr']]

best_model_wts = copy.deepcopy(model.state_dict())

for epoch in range(num_epochs):
       print('Epoch {}/{}'.format(epoch, num_epochs - 1))
       print('-' * 10)

# 训练和验证
       for phase in ['train', 'valid']:
           if phase == 'train':
               model.train()  # 训练
           else:
               model.eval()  # 验证

running_loss = 0.0
           running_corrects = 0

# 把数据都取个遍
           for inputs, labels in dataloaders[phase]:
               inputs = inputs.to(device)
               labels = labels.to(device)

# 清零
               optimizer.zero_grad()
               # 只有训练的时候计算和更新梯度
               with torch.set_grad_enabled(phase == 'train'):
                   if is_inception and phase == 'train':
                       outputs, aux_outputs = model(inputs)
                       loss1 = criterion(outputs, labels)
                       loss2 = criterion(aux_outputs, labels)
                       loss = loss1 + 0.4 * loss2
                   else:  # resnet执行的是这里
                       outputs = model(inputs)
                       loss = criterion(outputs, labels)

_, preds = torch.max(outputs, 1)

# 训练阶段更新权重
                   if phase == 'train':
                       loss.backward()
                       optimizer.step()

# 计算损失
               running_loss += loss.item() * inputs.size(0)
               running_corrects += torch.sum(preds == labels.data)

epoch_loss = running_loss / len(dataloaders[phase].dataset)
           epoch_acc = running_corrects.double() / len(dataloaders[phase].dataset)

time_elapsed = time.time() - since
           print('Time elapsed {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
           print('{} Loss: {:.4f} Acc: {:.4f}'.format(phase, epoch_loss, epoch_acc))

# 得到最好那次的模型
           if phase == 'valid' and epoch_acc > best_acc:
               best_acc = epoch_acc
               best_model_wts = copy.deepcopy(model.state_dict())
               state = {
                   'state_dict': model.state_dict(),
                   'best_acc': best_acc,
                   'optimizer': optimizer.state_dict(),
               }
               torch.save(state, filename)
           if phase == 'valid':
               val_acc_history.append(epoch_acc)
               valid_losses.append(epoch_loss)
               scheduler.step(epoch_loss)
           if phase == 'train':
               train_acc_history.append(epoch_acc)
               train_losses.append(epoch_loss)

print('Optimizer learning rate : {:.7f}'.format(optimizer.param_groups[0]['lr']))
       LRs.append(optimizer.param_groups[0]['lr'])
       print()

time_elapsed = time.time() - since
   print('Training complete in {:.0f}m {:.0f}s'.format(time_elapsed // 60, time_elapsed % 60))
   print('Best val Acc: {:4f}'.format(best_acc))

# 训练完后用最好的一次当做模型最终的结果
   model.load_state_dict(best_model_wts)
   return model, val_acc_history, train_acc_history, valid_losses, train_losses, LRs

开始训练


# ----------------8. 开始训练------------------

# 训练
model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = \
   train_model(model_ft, dataloaders, criterion, optimizer_ft, num_epochs=20, is_inception=(model_name=="inception"))

# 再继续训练所有层
for param in model_ft.parameters():
   param.requires_grad = True

# 再继续训练所有的参数,学习率调小一点
optimizer = optim.Adam(params_to_update, lr=1e-4)
scheduler = optim.lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)

# 损失函数
criterion = nn.NLLLoss()

# Load the checkpoint

checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
#model_ft.class_to_idx = checkpoint['mapping']

model_ft, val_acc_history, train_acc_history, valid_losses, train_losses, LRs  = train_model(model_ft, dataloaders, criterion, optimizer, num_epochs=10, is_inception=(model_name=="inception"))

输出结果:
Epoch 0/9
----------
Time elapsed 3m 8s
train Loss: 1.8128 Acc: 0.8065
Time elapsed 3m 17s
valid Loss: 4.6786 Acc: 0.6993
Optimizer learning rate : 0.0010000

Epoch 1/9
----------
Time elapsed 6m 26s
train Loss: 1.5370 Acc: 0.8268
Time elapsed 6m 34s
valid Loss: 4.3483 Acc: 0.7017
Optimizer learning rate : 0.0010000

Epoch 2/9
----------
Time elapsed 9m 44s
train Loss: 1.3812 Acc: 0.8367
Time elapsed 9m 52s
valid Loss: 4.0840 Acc: 0.7127
Optimizer learning rate : 0.0010000

Epoch 3/9
----------
Time elapsed 13m 2s
train Loss: 1.4777 Acc: 0.8312
Time elapsed 13m 10s
valid Loss: 4.2493 Acc: 0.7078
Optimizer learning rate : 0.0010000

Epoch 4/9
----------
Time elapsed 16m 22s
train Loss: 1.3351 Acc: 0.8434
Time elapsed 16m 31s
valid Loss: 3.6103 Acc: 0.7396
Optimizer learning rate : 0.0010000

Epoch 5/9
----------
Time elapsed 19m 42s
train Loss: 1.2934 Acc: 0.8466
Time elapsed 19m 51s
valid Loss: 3.3350 Acc: 0.7494
Optimizer learning rate : 0.0010000

Epoch 6/9
----------
Time elapsed 23m 2s
train Loss: 1.3289 Acc: 0.8379
Time elapsed 23m 11s
valid Loss: 3.9728 Acc: 0.7164
Optimizer learning rate : 0.0010000

Epoch 7/9
----------
Time elapsed 26m 22s
train Loss: 1.3739 Acc: 0.8321
Time elapsed 26m 31s
valid Loss: 3.7483 Acc: 0.7237
Optimizer learning rate : 0.0010000

Epoch 8/9
----------
Time elapsed 29m 43s
train Loss: 1.2110 Acc: 0.8495
Time elapsed 29m 52s
valid Loss: 3.7712 Acc: 0.7164
Optimizer learning rate : 0.0010000

Epoch 9/9
----------
Time elapsed 33m 2s
train Loss: 1.2643 Acc: 0.8452
Time elapsed 33m 11s
valid Loss: 3.7012 Acc: 0.7311
Optimizer learning rate : 0.0010000

Training complete in 33m 11s
Best val Acc: 0.749389

测试

测试网络效果


# ----------------9. 测试网络效果------------------

probs, classes = predict(image_path, model)
print(probs)
print(classes)

输出结果:
[ 0.01558163 0.01541934 0.01452626 0.01443549 0.01407339]
['70', '3', '45', '62', '55']

测试训练好的模型


# ----------------10. 测试训练好的模型------------------

model_ft, input_size = initialize_model(model_name, 102, feature_extract, use_pretrained=True)

# GPU模式
model_ft = model_ft.to(device)

# 保存文件的名字
filename = 'seriouscheckpoint.pth'

# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

测试数据预处理

注意:

  1. 测试数据处理方法需要跟训练时一致才可以

  2. crop 操作的目的是保证输入的大小是一致的

  3. 标准化也是必须的, 用跟训练数据相同的 mean 和 std

  4. 训练数据是在 0~1 上进行标准化, 所以测试数据也需要先归一化

  5. PyTorch 中的颜色是第一个维度, 跟很多工具包都不一样, 需要转换


# ----------------11. 测试数据预处理------------------

def process_image(image_path):
   # 读取测试数据
   img = Image.open(image_path)
   # Resize,thumbnail方法只能进行缩小,所以进行了判断
   if img.size[0] > img.size[1]:
       img.thumbnail((10000, 256))
   else:
       img.thumbnail((256, 10000))
   # Crop操作
   left_margin = (img.width - 224) / 2
   bottom_margin = (img.height - 224) / 2
   right_margin = left_margin + 224
   top_margin = bottom_margin + 224
   img = img.crop((left_margin, bottom_margin, right_margin,
                   top_margin))
   # 相同的预处理方法
   img = np.array(img) / 255
   mean = np.array([0.485, 0.456, 0.406])  # provided mean
   std = np.array([0.229, 0.224, 0.225])  # provided std
   img = (img - mean) / std

# 注意颜色通道应该放在第一个位置
   img = img.transpose((2, 0, 1))

return img

def imshow(image, ax=None, title=None):
   """展示数据"""
   if ax is None:
       fig, ax = plt.subplots()

# 颜色通道还原
   image = np.array(image).transpose((1, 2, 0))

# 预处理还原
   mean = np.array([0.485, 0.456, 0.406])
   std = np.array([0.229, 0.224, 0.225])
   image = std * image + mean
   image = np.clip(image, 0, 1)

ax.imshow(image)
   ax.set_title(title)

return ax

image_path = 'image_06621.jpg'
img = process_image(image_path)
imshow(img)

# 得到一个batch的测试数据
dataiter = iter(dataloaders['valid'])
images, labels = dataiter.next()

model_ft.eval()

if train_on_gpu:
   output = model_ft(images.cuda())
else:
   output = model_ft(images)

_, preds_tensor = torch.max(output, 1)

preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())

展示预测结果


# ----------------12. 展示预测结果------------------

fig=plt.figure(figsize=(20, 20))
columns =4
rows = 2

for idx in range (columns*rows):
   ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
   plt.imshow(im_convert(images[idx]))
   ax.set_title("{} ({})".format(cat_to_name[str(preds[idx])], cat_to_name[str(labels[idx].item())]),
                color=("green" if cat_to_name[str(preds[idx])]==cat_to_name[str(labels[idx].item())] else "red"))
plt.show()

输出结果:

PyTorch一小时掌握之图像识别实战篇

PyTorch一小时掌握之图像识别实战篇

来源:https://iamarookie.blog.csdn.net/article/details/114309226

0
投稿

猜你喜欢

  • 目录一、概念描述二、序列的可迭代性三、经典的迭代器模式四、生成器也是迭代器五、实现惰性迭代器六、使用生成器表达式简化惰性迭代器总结一、概念描
  • 问题你想自己去实现一个新的上下文管理器,以便使用with语句。解决方案实现一个新的上下文管理器的最简单的方法就是使用 contexlib 模
  • 需求需要检查多个端口是否开放,没有找到第三方工具和服务来快速测通,就自己用python写了个脚本.原理是通过telnet来实现的,仅支持tc
  • 在多线程中使用lock可以让多个线程在共享资源的时候不会&ldquo;乱&rdquo;,例如,创建多个线程,每个线程都往空列
  • 本文实例总结了python格式化字符串的方法,分享给大家供大家参考。具体分析如下:将python字符串格式化方法以例子的形式表述如下:* 定
  • 最近看到网上的一些作品,然后进行一些完善。只是用于学习,不要去干坏事哦。程序来源于网,我只是做了一些优化。当然这种方法破解还是有点慢哦。我用
  • 前言A货:什么!你不会背圆周率(鄙夷的眼神) 3.1415926535 8979323846 26433... 桥哥:我会算呀 !
  • MySQL提供标准的SQL模式匹配,以及一种基于象Unix实用程序如vi、grep和sed的扩展正则表达式模式匹配的格式。标准的SQL模式匹
  • 树莓派没有显示器,而不想设置固定IP,因为要随身携带外出,每个网络环境可能网段不一样。因此想用python写个脚本,让树莓派开机后自动获取本
  • 前言一般的反爬措施是在多次请求之间增加随机的间隔时间,即设置一定的延时。但如果请求后存在缓存,就可以省略设置延迟,这样一定程度地缩短了爬虫程
  • PHP使用星号替代用户名手机和邮箱这个在许多的活动界面会看到如淘宝的购物界面中的一些客户的支付宝号都是隐藏掉的哦,下面我们来看一下它的使用方
  • 本人之前写了一套基于unnitest框架的UI自动化框架,但是发现了pytest框架之后觉得unnitest太low,现在重头开始学pyte
  • 0x01春节闲着没事(是有多闲),就写了个简单的程序,来爬点笑话看,顺带记录下写程序的过程。第一次接触爬虫是看了这么一个帖子,一个逗逼,爬取
  • 前沿对于iOS开发不要随便拆卸系统自带的Python,因为有很多 library 还是使用 Python2.7。1 安装Xcode1.1 A
  • 1、唠唠叨叨最近又回顾了下Websocket,发现已经忘的七七八八了。于是用js写了客户端,用python写了服务端,来复习一下这方面的知识
  • 本文实例为大家分享了python使用插值法画出平滑曲线的具体代码,供大家参考,具体内容如下实现所需的库numpy、scipy、matplot
  • 正则表达式的使用想要学习 Python 爬虫 , 首先需要了解一下正则表达式的使用,下面我们就来看看如何使用。. 的使用这个时候的点就相当于
  • [本站原创]在我们浏览了一些网页时,经常会弹出一些信息窗口或浏览器窗口以显示一些公告内容,想知道这些窗口是怎么制作出来的吗?如果你还不曾知道
  • 占位符通过占位符,可以指定格式进行输入或输出,以下为 fmt 标准库里的占位符:普通占位符占位符描述举例结果%v默认格式的值fmt.Prin
  • 本文环境Python 3.6.5Django 2.0.4fix(2018.5.19):最近得知Django 的model基类需要声明为abs
手机版 网络编程 asp之家 www.aspxhome.com