python多线程+代理池爬取天天基金网、股票数据过程解析
作者:孤鸟 发布时间:2023-07-22 12:26:28
简介
提到爬虫,大部分人都会想到使用Scrapy工具,但是仅仅停留在会使用的阶段。为了增加对爬虫机制的理解,我们可以手动实现多线程的爬虫过程,同时,引入IP代理池进行基本的反爬操作。
本次使用天天基金网进行爬虫,该网站具有反爬机制,同时数量足够大,多线程效果较为明显。
技术路线
IP代理池
多线程
爬虫与反爬
编写思路
首先,开始分析天天基金网的一些数据。经过抓包分析,可知:
./fundcode_search.js包含所有基金的数据,同时,该地址具有反爬机制,多次访问将会失败的情况。
同时,经过分析可知某只基金的相关信息地址为:fundgz.1234567.com.cn/js/ + 基金代码 + .js
分析完天天基金网的数据后,搭建IP代理池,用于反爬作用。点击这里搭建代理池,由于该作者提供了一个例子,所以本代码里面直接使用的是作者提供的接口。如果你需要更快速的获取到普匿IP,则可以自行搭建一个本地IP代理池。
# 返回一个可用代理,格式为ip:端口
# 该接口直接调用github代理池项目给的例子,故不保证该接口实时可用
# 建议自己搭建一个本地代理池,这样获取代理的速度更快
# 代理池搭建github地址https://github.com/1again/ProxyPool
# 搭建完毕后,把下方的proxy.1again.cc改成你的your_server_ip,本地搭建的话可以写成127.0.0.1或者localhost
def get_proxy():
data_json = requests.get("http://proxy.1again.cc:35050/api/v1/proxy/?type=2").text
data = json.loads(data_json)
return data['data']['proxy']
搭建完IP代理池后,我们开始着手多线程爬取数据的工作。一旦使用多线程,则需要考虑到数据的读写顺序问题。这里使用python中的队列queue进行存储基金代码,不同线程分别从这个queue中获取基金代码,并访问指定基金的数据。由于queue的读取和写入是阻塞的,所以可以确保该过程不会出现读取重复和读取丢失基金代码的情况。
# 将所有基金代码放入先进先出FIFO队列中
# 队列的写入和读取都是阻塞的,故在多线程情况下不会乱
# 在不使用框架的前提下,引入多线程,提高爬取效率
# 创建一个队列
fund_code_queue = queue.Queue(len(fund_code_list))
# 写入基金代码数据到队列
for i in range(len(fund_code_list)):
#fund_code_list[i]也是list类型,其中该list中的第0个元素存放基金代码
fund_code_queue.put(fund_code_list[i][0])
现在,开始编写如何获取指定基金的代码。首先,该函数必须先判断queue是否为空,当不为空的时候才可进行获取基金数据。同时,当发现访问失败时,则必须将我们刚刚取出的基金代码重新放回到队列中去,这样才不会导致基金代码丢失。
# 获取基金数据
def get_fund_data():
# 当队列不为空时
while (not fund_code_queue.empty()):
# 从队列读取一个基金代码
# 读取是阻塞操作
fund_code = fund_code_queue.get()
# 获取一个代理,格式为ip:端口
proxy = get_proxy()
# 获取一个随机user_agent和Referer
header = {'User-Agent': random.choice(user_agent_list),
'Referer': random.choice(referer_list)
}
try:
req = requests.get("http://fundgz.1234567.com.cn/js/" + str(fund_code) + ".js", proxies={"http": proxy}, timeout=3, headers=header)
except Exception:
# 访问失败了,所以要把我们刚才取出的数据再放回去队列中
fund_code_queue.put(fund_code)
print("访问失败,尝试使用其他代理访问")
当访问成功时,则说明能够成功获得基金的相关数据。当我们在将这些数据存入到一个.csv文件中,会发现数据出现错误。这是由于多线程导致,由于多个线程同时对该文件进行写入,导致出错。所以需要引入一个线程锁,确保每次只有一个线程写入。
# 申请获取锁,此过程为阻塞等待状态,直到获取锁完毕
mutex_lock.acquire()
# 追加数据写入csv文件,若文件不存在则自动创建
with open('./fund_data.csv', 'a+', encoding='utf-8') as csv_file:
csv_writer = csv.writer(csv_file)
data_list = [x for x in data_dict.values()]
csv_writer.writerow(data_list)
# 释放锁
mutex_lock.release()
至此,大部分工作已经完成了。为了更好地实现伪装效果,我们对header进行随机选择。
# user_agent列表
user_agent_list = [
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER',
'Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)',
'Mozilla/5.0 (Windows NT 5.1) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 SE 2.X MetaSr 1.0',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Maxthon/4.4.3.4000 Chrome/30.0.1599.101 Safari/537.36',
'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36'
]
# referer列表
referer_list = [
'http://fund.eastmoney.com/110022.html',
'http://fund.eastmoney.com/110023.html',
'http://fund.eastmoney.com/110024.html',
'http://fund.eastmoney.com/110025.html'
]
# 获取一个随机user_agent和Referer
header = {'User-Agent': random.choice(user_agent_list),
'Referer': random.choice(referer_list)
}
最后,在main中,开启线程即可。
# 创建一个线程锁,防止多线程写入文件时发生错乱
mutex_lock = threading.Lock()
# 线程数为50,在一定范围内,线程数越多,速度越快
for i in range(50):
t = threading.Thread(target=get_fund_data,name='LoopThread'+str(i))
t.start()
通过对多线程和IP代理池的实践操作,能够更加深入了解多线程和爬虫的工作原理。当你在使用一些爬虫框架的时候,就能够做到快速定位错误并解决错误。
数据格式
000056,建信消费升级混合,2019-03-26,1.7740,1.7914,0.98,2019-03-27 15:00
000031,华夏复兴混合,2019-03-26,1.5650,1.5709,0.38,2019-03-27 15:00
000048,华夏双债增强债券C,2019-03-26,1.2230,1.2236,0.05,2019-03-27 15:00
000008,嘉实中证500ETF联接A,2019-03-26,1.4417,1.4552,0.93,2019-03-27 15:00
000024,大摩双利增强债券A,2019-03-26,1.1670,1.1674,0.04,2019-03-27 15:00
000054,鹏华双债增利债券,2019-03-26,1.1697,1.1693,-0.03,2019-03-27 15:00
000016,华夏纯债债券C,2019-03-26,1.1790,1.1793,0.03,2019-03-27 15:00
功能截图
配置说明
# 确保安装以下库,如果没有,请在python3环境下执行pip install 模块名
import requests
import random
import re
import queue
import threading
import csv
import json
补充
完整版源代码存放在github上,有需要的可以下载
项目持续更新,欢迎您star本项目
,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值
来源:https://segmentfault.com/a/1190000018680365


猜你喜欢
- 前言本文介绍的是将django项目部署到centos的遇到的一些问题,关于将Django项目部署到CentOs服务器中的步骤可以参考这篇文章
- 读取csv文件时添加表头/列名有时,我们读取的csv文件数据时发现没有表头/列名,是因为Python读取csv文件数据本来就没有表头,用pa
- 安装时是需要设置python环境变量的,下载python的时候底下有个小框框(没有默认选中)Add Python 3.7 to PATH需要
- 本文以实例分析了Python中asyncore模块的原理及用法,分享给大家供大家参考。具体分析如下:asyncore库是python的一个标
- 简单的Tensorflow验证码识别应用,供大家参考,具体内容如下1.Tensorflow的安装方式简单,在此就不赘述了.2.训练集训练集以
- pytest概述pytest是一个非常成熟的全功能的Python测试框架,主要特点有以下几点:1、简单灵活,容易上手,文档丰富;2、支持参数
- 首先你要明白24bit的bmp图片的基本信息:1像素占3个字节,头部占54个字节。好了,现在开始做验证码了,这里以4位验证码(大小为20(高
- 前言Pytorch、Tensoflow等许多深度学习框架集成了大量常见的网络层,为我们搭建神经网络提供了诸多便利。但在实际工作中,因为项目要
- 1、环境1、python 3.72、pyinstaller2、下载方式:2.1 python安装(略)2.2 安装pyinstaller打开
- 应用场景域名资产监控,通过输入一个主域名,找到该域名对应的ip地址所在的服务器的端口开闭情况。通过定期做这样的监控,有助于让自己知道自己的资
- 前言最近在整理我磁盘上的照片,发现不少猫照,突然觉得若能把这些猫照都挑出来,观察它们的成长轨迹也是一件不错的事情。一张一张的找实在是太费劲了
- 文件打开方式当我们用open()函数去打开文件的时候,有好几种打开的模式。'r'->只读'w'->
- 简介 Closure 所谓“闭包”,指的是一个拥有许多变量和绑定了这些变量的环境的表达式(通常是一个函数),因而这些变量也是该表达式的一部分
- 前言ppi-cpi 剪刀差大家可能都听说过,通过这个指标可以了解当前的经济运行状况,小编为了学习 python 的图形绘制,通过爬
- TF(Term Frequency)词频,在文章中出现次数最多的词,然而文章中出现次数较多的词并不一定就是关键词,比如常见的对文章本身并没有
- 如果你取相对路径不是在主文件里,可能就会有相对路径问题:"No such file or directory"。因为 p
- ancestor:祖先adjacent:相邻algorithm:运算法则anonymous box:无名盒子。例: anonymous in
- 当我们在安装scrapy的过程中出现了Twisted错误,当我们有继续安装Twisted的时候,又继续报错,通过一系列的查询和了解,终于发现
- 请问如何使用CDONTS组件来发送电子邮件?我们可以在IIS4下使用CDONTS来完成。首先要确认是否安装了SMTP服务(OPTIONPAC
- profile是什么当我们要对某一条sql的性能进行分析时,可以使用它。Profiling是从 mysql5.0.3版本以后才开放的。启动p