Python opencv缺陷检测的实现及问题解决
作者:Dream丶Killer 发布时间:2023-03-10 20:41:55
标签:opencv,缺陷检测
题目描述
利用opencv
或其他工具编写程序实现缺陷检测。
实现过程
# -*- coding: utf-8 -*-
'''
作者 : 丁毅
开发时间 : 2021/4/21 15:30
'''
import cv2
import numpy as np
from PIL import Image, ImageDraw, ImageFont
import matplotlib.pyplot as plt
#用于给图片添加中文字符的函数
def cv2ImgAddText(img, text, left, top, textColor=(0, 255, 0), textSize=20):
# 判断是否OpenCV图片类型
if (isinstance(img, np.ndarray)):
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
# 创建一个可以在给定图像上绘图的对象
draw = ImageDraw.Draw(img)
# 字体的格式
fontStyle=ImageFont.truetype("font/simsun.ttc",textSize, encoding="utf-8")
# 绘制文本
draw.text((left, top), text, textColor, font=fontStyle)
# 转换回OpenCV格式
return cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
# plt绘图显示中文
plt.rcParams['font.family'] = 'SimHei'
img0 = cv2.imread(r"C:\Users\pc\Desktop\0.bmp")
cv2.imshow('img', img0)
# 彩色图转灰度图
img1 = cv2.cvtColor(img0, cv2.COLOR_BGR2GRAY)
# 缺陷检测
for i in range(1, 6):
defect_img0 = cv2.imread(r"C:\Users\pc\Desktop\%d.bmp"%i)
# 获取灰度图像
defect_img1 = cv2.cvtColor(defect_img0, cv2.COLOR_BGR2GRAY)
# 获取原图像的灰度直方图
hist0 = cv2.calcHist([img1], [0], None, [256], [0.0, 255.0])
# 获取待检测图像的灰度直方图
hist1 = cv2.calcHist([defect_img1], [0], None, [256], [0.0, 255.0])
# 为图像添加标题
plt.title("原图与待检测img%d对比"%i)
# 添加图例
plt.plot(hist0, label='原图')
plt.plot(hist1, label='待检测img%d'%i)
# 相似度比较
rst = cv2.compareHist(hist0, hist1, method=cv2.HISTCMP_CORREL)
# res >= 0.95即认为合格
cv2.imshow(str(i) + ".img", cv2ImgAddText(defect_img0, "合格" if rst >= 0.95 else "不合格", 20, 20, (255, 0, 0), 25))
# 设置x轴的数值范围
plt.xlim([0, 256])
plt.legend(loc='upper left')
plt.show()
cv2.waitKey(0)
运行结果
问题及解决方法
1.获取原图的直方图
参考链接
方式:
cv2.calcHist(images, channels, mask, histSize, ranges[, hist[, accumulate ]])
images
:输入的图像channels
:选择图像的通道mask
:是一个大小和image
一样的np
数组,其中把需要处理的部分指定为1,不需要处理的部分指定为0,一般设置为None
,表示处理整幅图像。histSize
:使用多少个bin
(柱子),一般为256ranges
:像素值的范围,一般为[0,255]表示0~255
该函数结果返回一个二维数组,该数组反应画面中亮度的分布和比例。
2.比较两个直方图的相似度
参考链接
方式:
cv2.compareHist(H1, H2, method)
H1
:第一个直方图数组H2
:第二个直方图数组(与第一个纬度相同)method
:所使用的方式
该函数返回一个[0,1]
的相似度值,值越接近一就表名相似度越高。
3.相似度参数微调
由于compareHist
函数返回一个[0,1]
的值,需要自己调整一个阈值来选取哪些合格,经过调整后,发现阈值取[0.90, 0.95]
能够正确选取与实验的结果,代码中取的是0.95,即待检测图与原图之间的相似度如果小于0.95则不合格。
4.通过plot显示原图与待检测图的关系折线
参考链接
通过calcHist
函数返回的hist数组值,运用matplotlib
绘制原图和待检测图之间的关系折线图。对比两个曲线的差异。
来源:https://blog.csdn.net/qq_43965708/article/details/


猜你喜欢
- Math概述Math 对象不是构造函数,它具有数学常数和函数的属性和方法。跟数学相关的运算(求绝对值,取整、最大值等)可以使用 Math 中
- 最近在老家找工作,无奈老家工作真心太少,也没什么面试机会,不过之前面试一家公司,提了一个有意思的需求,检测河面没有有什么船只之类的物体,我当
- 一、数字类型所谓的“数字类”,就是指 DECIMAL 和 NUMERIC,它们是同一种类型。它严格的
- MySQL4.1以前版本服务器只能使用单一字符集,从MySQL4.1版本开始,不仅服务器能够使用多种字符集,而且在服务器、数据库、数据表、数
- 在Mysql中很多表都包含可为NULL(空值)的列,即使应用程序并不需要保存NULL也是如此,这是因为可为NULL是列的默认属性。但我们常在
- 本文介绍了数据库索引,及其优、缺点。针对MySQL索引的特点、应用进行了详细的描述。分析了如何避免MySQL无法使用,如何使用EXPLAIN
- python web.py启动https端口 web.py启动https端口需要ssl
- 先来说eval的用法,内容比较简单,熟悉的可以跳过eval函数接收一个参数s,如果s不是字符串,则直接返回s。否则执行s语句。如果s语句执行
- 在windows下安装Mysql系统日志出现max_open_files: 2048 max_connections: 510 table_
- 序列化把对象(变量)从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serializa
- 常见的一种应用场景:条件:假设A的shape为[4, 2],B的shape为[5, 2]目的:实现A中的每一行, 减去B中的所有行(broa
- innodb这种引擎,与MYISAM引擎的区别很大。特别是它的数据存储格式等.对于innodb的数据结构,首先要解决两个概念性的问题: 共享
- MySQL 如何从表中取出随机数据 以前在群里讨论过这个问题,比较的有意思.mysql的语法真好玩. 他们原来都想用P
- Go流程控制1、条件语句IF1、简单格式(不支持三目运算符)if 布尔表达式 { // 执行语句}2、if里面包含多个表达式的时
- 基于smtplib包制作而成,但在实践中发现一个不知道算不算是smtplib留的一个坑,在网络断开的情况下发送邮件时会抛出一个socket.
- 5,闭包 闭包意味着内层的函数可以引用存在于包围它的函数内的变量,即使外层函数的执行已经终止。 让我们先来看一个闭包的例子。 <scr
- 提到分发请求,相信大多数人首先会想到Nginx,Nginx作为一种多功能服务器,不仅提供了反向代理隐藏主机ip的能力,还拥有简单的缓存加速功
- NumPy提供了多种存取数组内容的文件操作函数。保存数组数据的文件可以是二进制格式或者文本格式。二进制格式的文件又分为NumPy专用的格式化
- 二维码作为一种信息传递的工具,在当今社会发挥了重要作用。从手机用户登录到手机支付,生活的各个角落都能看到二维码的存在。那你知道二维码是怎么解
- 排序这个词,我的第一感觉是几乎所有App都有排序的地方,淘宝商品有按照购买时间的排序、B站的评论有按照热度排序的...对于MySQL,一说到