符合语言习惯的 Python 优雅编程技巧【推荐】
作者:安生 发布时间:2022-07-07 10:43:40
Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。
0. 程序必须先让人读懂,然后才能让计算机执行。
“Programs must be written for people to read, and only incidentally for machines to execute.”
1. 交换赋值
##不推荐
temp = a
a = b
b = a
##推荐
a, b = b, a # 先生成一个元组(tuple)对象,然后unpack
2. Unpacking
##不推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name = l[0]
last_name = l[1]
phone_number = l[2]
##推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name, last_name, phone_number = l
# Python 3 Only
first, *middle, last = another_list
3. 使用操作符in
##不推荐
if fruit == "apple" or fruit == "orange" or fruit == "berry":
# 多次判断
##推荐
if fruit in ["apple", "orange", "berry"]:
# 使用 in 更加简洁
4. 字符串操作
##不推荐
colors = ['red', 'blue', 'green', 'yellow']
result = ''
for s in colors:
result += s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象
##推荐
colors = ['red', 'blue', 'green', 'yellow']
result = ''.join(colors) # 没有额外的内存分配
5. 字典键值列表
##不推荐
for key in my_dict.keys():
# my_dict[key] ...
##推荐
for key in my_dict:
# my_dict[key] ...
# 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys()
# 生成静态的键值列表。
6. 字典键值判断
##不推荐
if my_dict.has_key(key):
# ...do something with d[key]
##推荐
if key in my_dict:
# ...do something with d[key]
7. 字典 get 和 setdefault 方法
##不推荐
navs = {}
for (portfolio, equity, position) in data:
if portfolio not in navs:
navs[portfolio] = 0
navs[portfolio] += position * prices[equity]
##推荐
navs = {}
for (portfolio, equity, position) in data:
# 使用 get 方法
navs[portfolio] = navs.get(portfolio, 0) + position * prices[equity]
# 或者使用 setdefault 方法
navs.setdefault(portfolio, 0)
navs[portfolio] += position * prices[equity]
8. 判断真伪
##不推荐
if x == True:
# ....
if len(items) != 0:
# ...
if items != []:
# ...
##推荐
if x:
# ....
if items:
# ...
9. 遍历列表以及索引
##不推荐
items = 'zero one two three'.split()
# method 1
i = 0
for item in items:
print i, item
i += 1
# method 2
for i in range(len(items)):
print i, items[i]
##推荐
items = 'zero one two three'.split()
for i, item in enumerate(items):
print i, item
10. 列表推导
##不推荐
new_list = []
for item in a_list:
if condition(item):
new_list.append(fn(item))
##推荐
new_list = [fn(item) for item in a_list if condition(item)]
11. 列表推导-嵌套
##不推荐
for sub_list in nested_list:
if list_condition(sub_list):
for item in sub_list:
if item_condition(item):
# do something...
##推荐
gen = (item for sl in nested_list if list_condition(sl) \
for item in sl if item_condition(item))
for item in gen:
# do something...
12. 循环嵌套
##不推荐
for x in x_list:
for y in y_list:
for z in z_list:
# do something for x & y
##推荐
from itertools import product
for x, y, z in product(x_list, y_list, z_list):
# do something for x, y, z
13. 尽量使用生成器代替列表
##不推荐
def my_range(n):
i = 0
result = []
while i < n:
result.append(fn(i))
i += 1
return result # 返回列表
##推荐
def my_range(n):
i = 0
result = []
while i < n:
yield fn(i) # 使用生成器代替列表
i += 1
*尽量用生成器代替列表,除非必须用到列表特有的函数。
14. 中间结果尽量使用imap/ifilter代替map/filter
##不推荐
reduce(rf, filter(ff, map(mf, a_list)))
##推荐
from itertools import ifilter, imap
reduce(rf, ifilter(ff, imap(mf, a_list)))
*lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。
15. 使用any/all函数
##不推荐
found = False
for item in a_list:
if condition(item):
found = True
break
if found:
# do something if found...
##推荐
if any(condition(item) for item in a_list):
# do something if found...
16. 属性(property)
=
##不推荐
class Clock(object):
def __init__(self):
self.__hour = 1
def setHour(self, hour):
if 25 > hour > 0: self.__hour = hour
else: raise BadHourException
def getHour(self):
return self.__hour
##推荐
class Clock(object):
def __init__(self):
self.__hour = 1
def __setHour(self, hour):
if 25 > hour > 0: self.__hour = hour
else: raise BadHourException
def __getHour(self):
return self.__hour
hour = property(__getHour, __setHour)
17. 使用 with 处理文件打开
##不推荐
f = open("some_file.txt")
try:
data = f.read()
# 其他文件操作..
finally:
f.close()
##推荐
with open("some_file.txt") as f:
data = f.read()
# 其他文件操作...
18. 使用 with 忽视异常(仅限Python 3)
##不推荐
try:
os.remove("somefile.txt")
except OSError:
pass
##推荐
from contextlib import ignored # Python 3 only
with ignored(OSError):
os.remove("somefile.txt")
19. 使用 with 处理加锁
##不推荐
import threading
lock = threading.Lock()
lock.acquire()
try:
# 互斥操作...
finally:
lock.release()
##推荐
import threading
lock = threading.Lock()
with lock:
# 互斥操作...
20. 参考
1) Idiomatic Python: http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
2) PEP 8: Style Guide for Python Code: http://www.python.org/dev/peps/pep-0008/
总结
以上所述是小编给大家介绍的符合语言习惯的 Python 优雅编程技巧 网站的支持!
来源:http://lovesoo.org/pythonic-python-programming.html


猜你喜欢
- 自定义序列的相关魔法方法允许我们自己创建的类拥有序列的特性,让其使用起来就像 python 的内置序列(dict,tuple,list,st
- 下面两个函数的使用和FIND_IN_SET一样,使用时只需要把FIND_IN_SET换成FIND_PART_IN_SET或FIND_ALL_
- 整个重装步骤大致分四个步骤进行,第一步,备份原mysql中的所有数据库。第二步,完全卸载mysql第三步,下载安装新版mysql第四步,导入
- pycharm是编辑python很好使用的工具。下面看看如何安装pycharm工具/原料:pycharm安装包方法/步骤:在网上下载pych
- 1. 模型1.1. 模型定义type User struct { gorm.Model
- 用Vue写了一个简单的时间钟,供大家参考,具体内容如下此时钟内容包括年月日及星期和时分秒。功能分析:1.年份,日期,时间的显示2.动态的变化
- vue单向数据流在vue中需要遵循单向数据流原则在父传子的前提下,父组件的数据发生会通知子组件自动更新子组件内部,不能直接修改父组件传递过来
- SQL Server PRIMARY KEY(主键)约束简介主键是唯一标识表中每一行的一列或一组列。您可以使用主键约束为表创建主键。如果主键
- EXISTS该函数返回集合中第一个元素的索引,如果集合为空,返回NULLNULLNULLCollection.EXISTS(index)CO
- 本文实例讲述了golang简单读写文件的方法。分享给大家供大家参考,具体如下:这里演示golang读写文件的方法:package maini
- 在经典的数据库理论里,本地事务具备四大特征:原子性事务中的所有操作都是以原子的方式执行的,要么全部成功,要么全部失败;一致性事务执行前后,所
- 本文实例讲述了Python实现周期性抓取网页内容的方法。分享给大家供大家参考,具体如下:1.使用sched模块可以周期性地执行指定函数2.在
- 接上篇Mysql数据库性能优化二对表进行水平划分 &nbs
- 这篇文章主要介绍了python通过移动端访问查看电脑界面,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的
- 前言相信用过Range的朋友们都知道,Go语言中的range关键字使用起来非常的方便,它允许你遍历某个slice或者map,并通过两个参数(
- 本文中介绍的系统优化,主要针对前端和后台这两方面(后台方面主要对SQL语句和数据存储进行了优化),下文中我们将介绍一些优化技巧和经验。技巧:
- 过程名:ManualPagination作 用:采用手动分页方式显示文章具体的内容参 数:ArticleID,strContentSub&n
- IIS设置首先打开IIS就不用说了巴第2步右建默认网站属性第3步主目录选项卡点击第3步的配置按钮弹出窗口的设置,至此IIS设置完毕任意编辑器
- 存储过程的优缺点: 存储过程优点: 1.由于应用程序随着时间推移会不断更改,增删功能,T-SQL过程代码会变得更复杂,StoredProce
- 我们知道 Pandas 是数据科学社区中流行的 Python 包,它包含许多函数和方法来分析数据。尽管它的功能对于数据分析来说足够有效,但定