Spring Boot集成ElasticSearch实现搜索引擎的示例
作者:牛麦康纳 发布时间:2021-06-02 05:06:16
Elastic Search是一个开源的,分布式,实时搜索和分析引擎。Spring Boot为Elasticsearch及Spring Data Elasticsearch提供的基于它的抽象提供了基本的配置。Spring Boot提供了一个用于聚集依赖的spring-boot-starter-data-elasticsearch 'StarterPOM'。
ElasticSearch作为搜索引擎,我们需要解决2大问题:
1, 如何将被搜索的数据在ES上创建反向索引
2, Java代码如何与ES交互
其中第一个大问题又分为两个小问题
1.1,如何初始化已有的数据
1.2,如何同步增量数据
第二个大问题也有两种集成方式
2.1 Spring Data 9300端口集成
2.2 Restful API 9200端口集成
本篇先解决第二大问题。
第一种方式,利用RestAPI方式,也叫Jest方式:
示例代码:https://github.com/yejingtao/forblog/tree/master/demo-jest-elasticsearch
Pom.xml:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>yejingtao.demo.springcloud</groupId>
<artifactId>demo-jest-elasticsearch</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>demo-jest-elasticsearch</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.6.RELEASE</version>
</parent>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
<dependency>
<groupId>io.searchbox</groupId>
<artifactId>jest</artifactId>
</dependency>
<dependency>
<groupId>net.java.dev.jna</groupId>
<artifactId>jna</artifactId>
</dependency>
</dependencies>
</project>
Application.yml:
server:
port: 7081
spring:
elasticsearch:
jest:
uris:
- http://192.168.226.133:9200
read-timeout: 5000
注意这里是9200端口
主程序:最简单的Spring boot启动程序:
@SpringBootApplication
public class ESApplication {
public static void main(String[] args) {
SpringApplication.run(ESApplication.class);
}
}
定义好ES中的实体类和对ES操作的接口:
public class Entity implements Serializable{
private static final long serialVersionUID = -763638353551774166L;
public static final String INDEX_NAME = "index_entity";
public static final String TYPE = "tstype";
private Long id;
private String name;
public Entity() {
super();
}
public Entity(Long id, String name) {
this.id = id;
this.name = name;
}
public Long getId() {
return id;
}
public void setId(Long id) {
this.id = id;
}
public String getName() {
return name;
}
public void setName(String name) {
this.name = name;
}
}
public interface CityESService {
void saveEntity(Entity entity);
void saveEntity(List<Entity> entityList);
List<Entity> searchEntity(String searchContent);
}
接口实现:
@Service
public class CityESServiceImpl implements CityESService{
private static final Logger LOGGER = LoggerFactory.getLogger(CityESServiceImpl.class);
@Autowired
private JestClient jestClient;
@Override
public void saveEntity(Entity entity) {
Index index = new Index.Builder(entity).index(Entity.INDEX_NAME).type(Entity.TYPE).build();
try {
jestClient.execute(index);
LOGGER.info("ES 插入完成");
} catch (IOException e) {
e.printStackTrace();
LOGGER.error(e.getMessage());
}
}
/**
* 批量保存内容到ES
*/
@Override
public void saveEntity(List<Entity> entityList) {
Bulk.Builder bulk = new Bulk.Builder();
for(Entity entity : entityList) {
Index index = new Index.Builder(entity).index(Entity.INDEX_NAME).type(Entity.TYPE).build();
bulk.addAction(index);
}
try {
jestClient.execute(bulk.build());
LOGGER.info("ES 插入完成");
} catch (IOException e) {
e.printStackTrace();
LOGGER.error(e.getMessage());
}
}
/**
* 在ES中搜索内容
*/
@Override
public List<Entity> searchEntity(String searchContent){
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
//searchSourceBuilder.query(QueryBuilders.queryStringQuery(searchContent));
//searchSourceBuilder.field("name");
searchSourceBuilder.query(QueryBuilders.matchQuery("name",searchContent));
Search search = new Search.Builder(searchSourceBuilder.toString())
.addIndex(Entity.INDEX_NAME).addType(Entity.TYPE).build();
try {
JestResult result = jestClient.execute(search);
return result.getSourceAsObjectList(Entity.class);
} catch (IOException e) {
LOGGER.error(e.getMessage());
e.printStackTrace();
}
return null;
}
}
这里插入数据的方式给了两种,一种是单次API直接插入,一种是利用ES的bulk批量插入。
做一个controller方面我们测试:
启动后在浏览器中请求http://localhost:7081/entityController/search?name=%E4%BA%BA%E6%89%8B%E4%BA%95
得到结果:
这里只返回了9条记录,而理论上ES默认的size是10,应该不是分页的问题,而是只能检索出9条匹配记录,用Kibana连上相同的搜索确认下:
这里用的是standard分词方式,将每个中文都作为了一个term,凡是包含“人”“手”“井”的都被搜索了出来,只是评分不同,如果想支持只能中文索引需要依赖ik插件
OK,RestFul方式对ElasticSearch的检索已经搞定了,更多的扩展可以慢慢研究下QueryBuilders里的源码和批注。
第二种方式,利用Spring Data客户端方式:
事先说明此方式有个弊端,让我掉了坑里好久才爬上来,Spring Data ElasticSearch必须与ElasticSearch版本相匹配,否则在对接时ES端会报版本不匹配错误,例如我ES是5.6.1版本,Spring boot是1.5.6版本,错误如下:
为解决这个问题我查找了一些资料,Spring Data与elasticsearch版本对应关系如下:
spring data elasticsearch | elasticsearch |
3.0.0.RC2 | 5.5.0 |
3.0.0.M4 | 5.4.0 |
2.0.4.RELEASE | 2.4.0 |
2.0.0.RELEASE | 2.2.0 |
1.4.0.M1 | 1.7.3 |
1.3.0.RELEASE | 1.5.2 |
1.2.0.RELEASE | 1.4.4 |
1.1.0.RELEASE | 1.3.2 |
1.0.0.RELEASE | 1.1.1 |
而我用的Spring Boot 1.5.6版本对应的Spring Data ElasticSearch是2.1.6版本,不支持5.X的ES,所以报错。到本博文撰写为止,Spring Boot的RELEASE版本最新的是1.5.8,对应的Spring Data ElasticSearch是2.1.8,仍不支持5.X的ES,所以如果一定要使用Java客户端方式集成ES只能放弃Spring Boot直接使用Spring Data和Spring MVC,或者降低ES的版本使之与Spring boot匹配。
示例代码:https://github.com/yejingtao/forblog/tree/master/demo-data-elasticsearch
pom.xml依赖:
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>yejingtao.demo.springcloud</groupId>
<artifactId>demo-data-elasticsearch</artifactId>
<version>0.0.1-SNAPSHOT</version>
<packaging>jar</packaging>
<name>demo-data-elasticsearch</name>
<url>http://maven.apache.org</url>
<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>1.5.8.RELEASE</version>
</parent>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-elasticsearch</artifactId>
</dependency>
</dependencies>
</project>
不再引用Jest。
application.yml:
server:
port: 7081
spring:
data:
elasticsearch:
cluster-nodes: 192.168.226.133:9300
cluster-name: my-es
repositories:
enabled: true
注意这里是9300端口
Controller、主程序、Service接口同Jest项目不变,不再罗列
实体类稍作变化,指定ES中的index和type:
@Document(indexName="index_entity", type="tstype")
多一个Repository接口,无需实现类,spring data标准用法:
/**
* Entity ES操作类
* @author yejingtao
*
*/
public interface EntityRepository extends ElasticsearchRepository<Entity,Long>{
}
Service实现类与Jest的天壤之别了,从语法上可以看出更像是对数据库层的操作:
@Service
public class CityESServiceImpl implements CityESService{
private static final Logger LOGGER = LoggerFactory.getLogger(CityESServiceImpl.class);
int PAGE_SIZE = 15; //默认分页大小
int PAGE_NUMBER = 0; //默认当前分页
String SCORE_MODE_SUM = "sum"; //权重分求和模式
Float MIN_SCORE = 10.0F; //由于无相关性的分值默认为1, 设置权重分最小值为10
@Autowired
EntityRepository entityRepository;
/**
* 保存内容到ES
*/
@Override
public Long saveEntity(Entity entity) {
Entity entityResult = entityRepository.save(entity);
return entityResult.getId();
}
/**
* 在ES中搜索内容
*/
@Override
public List<Entity> searchEntity(int pageNumber, int pageSize, String searchContent){
if(pageSize==0) {
pageSize = PAGE_SIZE;
}
if(pageNumber<0) {
pageNumber = PAGE_NUMBER;
}
SearchQuery searchQuery = getEntitySearchQuery(pageNumber,pageSize,searchContent);
LOGGER.info("\n searchCity: searchContent [" + searchContent + "] \n DSL = \n "
+ searchQuery.getQuery().toString());
Page<Entity> cityPage = entityRepository.search(searchQuery);
return cityPage.getContent();
}
/**
* 组装搜索Query对象
* @param pageNumber
* @param pageSize
* @param searchContent
* @return
*/
private SearchQuery getEntitySearchQuery(int pageNumber, int pageSize, String searchContent) {
FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery()
.add(QueryBuilders.matchPhraseQuery("name", searchContent),
ScoreFunctionBuilders.weightFactorFunction(1000))
//.add(QueryBuilders.matchPhraseQuery("other", searchContent),
//ScoreFunctionBuilders.weightFactorFunction(1000))
.scoreMode(SCORE_MODE_SUM).setMinScore(MIN_SCORE);
//设置分页,否则只能按照ES默认的分页给
Pageable pageable = new PageRequest(pageNumber, pageSize);
return new NativeSearchQueryBuilder().withPageable(pageable).withQuery(functionScoreQueryBuilder).build();
}
}
测试方式同Jest。
这两种方式,从设计上来讲属于两种思路,Spring Data的思路就是将ElasticSearch当自家的数据仓库来管理,直接通过Java客户端代码操作ES;Jest的思路是将ElasticSearch当为独立的服务端,自己作为客户端用兼容性最强的RestFul格式来与之交互。
个人比较倾向于Jest方式,第一兼容性好,不需要考虑版本的问题。第二,从ElasticSearch本身的设计上来分析,9200是对外服务端口,9300是内部管理和集群通信端口,请求9200获取搜索服务更符合ES的设计初衷,不会影响集群内部的通信。
以上比较分析仅代表个人观点,欢迎大神么交流批评。希望对大家的学习有所帮助,也希望大家多多支持脚本之家。
来源:http://blog.csdn.net/yejingtao703/article/details/78414874


猜你喜欢
- xUtils简介xUtils 包含了很多实用的android工具。xUtils 支持大文件上传,更全面的http请求协议支持(10种谓词),
- 前言工作中是否有这样的场景,多个线程任务,如果所有线程完成到某个阶段,你希望知道所有线程均完成该阶段。当然你使用线程计数可以实现,只是不够优
- 通过继承Thread类并实现run方法创建一个线程// 定义一个Thread类,相当于一个线程的模板class MyThread01 ext
- 简述用来干嘛的?当你在方法中调用了多个线程,对数据库进行了一些不为人知的操作后,还有一个操作需要留到前者都执行完的重头戏,就需要用到 Cou
- 本文实例讲述了Android实现ListView控件的多选和全选功能。分享给大家供大家参考,具体如下:主程序代码MainActivity.J
- 本文实例为大家分享了Android CameraManager类的具体代码,供大家参考,具体内容如下先看代码: private
- AndroidManifest.xml <uses-feature>和<uses-permisstion>分析及比较
- 1)1、1、2、3、5、8.......用递归算法求第30位数的值?首先我们能够发现从第3位数起后一位数等于前两位数值之和,即:x=(x-1
- 本文实例为大家分享了Android扫描和生成二维码的具体代码,供大家参考,具体内容如下MainActivity.javapublic cla
- 在微服务架构下,我们在完成一个订单流程时经常遇到下面的场景:一个订单创建接口,第一次调用超时了,然后调用方重试了一次在订单创建时,我们需要去
- 这篇文章主要介绍了Java内存模型可见性问题相关解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友
- 前言用户注册功能是每一个系统的入口门面功能,很多人可能会以为很简单,不就是一个简单的CRUD吗?其实不然,要把前后端功能都做出来,页面跳转也
- 目录前言步入正题类的加载过程:1.加载2.验证3.准备4.解析5.初始化类加载器源码总结前言学生时代应抱着问题去学习一门语言,例如:在学习j
- 前言在介绍Dubbo之前先了解一下基本概念:Dubbo是一个RPC框架,RPC,即Remote Procedure Call(远程过程调用)
- 一、示例搭建步骤先给出本文示例代码:WpfWithCefSharpDemo。1. 创建项目创建一个WPF项目,比如命名为&ldquo
- 象棋,很多人多接触过,学者写了一个,大神可以指点一下~直接上代码:贴出主要代码,想要Demo的点击下载:中国象棋Demopackage wy
- Android studio Run with --stacktrace option to get the stack tra
- SnowFlake 算法,是 Twitter 开源的分布式 id 生成算法。其核心思想就是:使用一个 64 bit 的 long 型的数字作
- 本文介绍idea的安装和基本使用首先保证JDK正常安装及配置下载地址:https://www.jetbrains.com/idea/down
- 效果图代码 package com.jh.timelinedemo;import android.content.Context;