MySQL Index Condition Pushdown(ICP)性能优化方法实例
作者:junjie 发布时间:2024-01-19 20:08:25
一 概念介绍
Index Condition Pushdown (ICP)是MySQL 5.6 版本中的新特性,是一种在存储引擎层使用索引过滤数据的一种优化方式。
a 当关闭ICP时,index 仅仅是data access 的一种访问方式,存储引擎通过索引回表获取的数据会传递到MySQL Server 层进行where条件过滤。
b 当打开ICP时,如果部分where条件能使用索引中的字段,MySQL Server 会把这部分下推到引擎层,可以利用index过滤的where条件在存储引擎层进行数据过滤,而非将所有通过index access的结果传递到MySQL server层进行where过滤.
优化效果:ICP能减少引擎层访问基表的次数和MySQL Server 访问存储引擎的次数,减少io次数,提高查询语句性能。
二 原理
Index Condition Pushdown is not used:
1 Get the next row, first by reading the index tuple, and then by using the index tuple to locate and read the full table row.
2 Test the part of the WHERE condition that applies to this table. Accept or reject the row based on the test result.
Index Condition Pushdown is used
1 Get the next row s index tuple (but not the full table row).
2 Test the part of the WHERE condition that applies to this table and can be checked using only index columns.
If the condition is not satisfied, proceed to the index tuple for the next row.
3 If the condition is satisfied, use the index tuple to locate and read the full table row.
4 est the remaining part of the WHERE condition that applies to this table. Accept or reject the row based on the test result.
三 实践案例
a 环境准备
数据库版本 5.6.16
关闭缓存
set query_cache_size=0;
set query_cache_type=OFF;
测试数据下载地址
b 当开启ICP时
mysql> SET profiling = 1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> select * from employees where first_name='Anneke' and last_name like '%sig' ;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10006 | 1953-04-20 | Anneke | Preusig | F | 1989-06-02 |
+--------+------------+------------+-----------+--------+------------+
1 row in set (0.00 sec)
mysql> show profiles;
+----------+------------+--------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+--------------------------------------------------------------------------------+
| 1 | 0.00060275 | select * from employees where first_name='Anneke' and last_name like '%sig' |
+----------+------------+--------------------------------------------------------------------------------+
3 rows in set, 1 warning (0.00 sec)
此时情况下根据MySQL的最左前缀原则, first_name 可以使用索引,last_name采用了like 模糊查询,不能使用索引。
c 关闭ICP
mysql> set optimizer_switch='index_condition_pushdown=off';
Query OK, 0 rows affected (0.00 sec)
mysql> SET profiling = 1;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> select * from employees where first_name='Anneke' and last_name like '%sig' ;
+--------+------------+------------+-----------+--------+------------+
| emp_no | birth_date | first_name | last_name | gender | hire_date |
+--------+------------+------------+-----------+--------+------------+
| 10006 | 1953-04-20 | Anneke | Preusig | F | 1989-06-02 |
+--------+------------+------------+-----------+--------+------------+
1 row in set (0.00 sec)
mysql> SET profiling = 0;
Query OK, 0 rows affected, 1 warning (0.00 sec)
mysql> show profiles;
+----------+------------+--------------------------------------------------------------------------------+
| Query_ID | Duration | Query |
+----------+------------+--------------------------------------------------------------------------------+
| 2 | 0.00097000 | select * from employees where first_name='Anneke' and last_name like '%sig' |
+----------+------------+--------------------------------------------------------------------------------+
6 rows in set, 1 warning (0.00 sec)
当开启ICP时 查询在sending data环节时间消耗是 0.000189s
mysql> show profile cpu,block io for query 1;
+----------------------+----------+----------+------------+--------------+---------------+
| Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |
+----------------------+----------+----------+------------+--------------+---------------+
| starting | 0.000094 | 0.000000 | 0.000000 | 0 | 0 |
| checking permissions | 0.000011 | 0.000000 | 0.000000 | 0 | 0 |
| Opening tables | 0.000025 | 0.000000 | 0.000000 | 0 | 0 |
| init | 0.000044 | 0.000000 | 0.000000 | 0 | 0 |
| System lock | 0.000014 | 0.000000 | 0.000000 | 0 | 0 |
| optimizing | 0.000021 | 0.000000 | 0.000000 | 0 | 0 |
| statistics | 0.000093 | 0.000000 | 0.000000 | 0 | 0 |
| preparing | 0.000024 | 0.000000 | 0.000000 | 0 | 0 |
| executing | 0.000006 | 0.000000 | 0.000000 | 0 | 0 |
| Sending data | 0.000189 | 0.000000 | 0.000000 | 0 | 0 |
| end | 0.000019 | 0.000000 | 0.000000 | 0 | 0 |
| query end | 0.000012 | 0.000000 | 0.000000 | 0 | 0 |
| closing tables | 0.000013 | 0.000000 | 0.000000 | 0 | 0 |
| freeing items | 0.000034 | 0.000000 | 0.000000 | 0 | 0 |
| cleaning up | 0.000007 | 0.000000 | 0.000000 | 0 | 0 |
+----------------------+----------+----------+------------+--------------+---------------+
15 rows in set, 1 warning (0.00 sec)
当关闭ICP时 查询在sending data环节时间消耗是 0.000735s
mysql> show profile cpu,block io for query 2;
+----------------------+----------+----------+------------+--------------+---------------+
| Status | Duration | CPU_user | CPU_system | Block_ops_in | Block_ops_out |
+----------------------+----------+----------+------------+--------------+---------------+
| starting | 0.000045 | 0.000000 | 0.000000 | 0 | 0 |
| checking permissions | 0.000007 | 0.000000 | 0.000000 | 0 | 0 |
| Opening tables | 0.000015 | 0.000000 | 0.000000 | 0 | 0 |
| init | 0.000024 | 0.000000 | 0.000000 | 0 | 0 |
| System lock | 0.000009 | 0.000000 | 0.000000 | 0 | 0 |
| optimizing | 0.000012 | 0.000000 | 0.000000 | 0 | 0 |
| statistics | 0.000049 | 0.000000 | 0.000000 | 0 | 0 |
| preparing | 0.000016 | 0.000000 | 0.000000 | 0 | 0 |
| executing | 0.000005 | 0.000000 | 0.000000 | 0 | 0 |
| Sending data | 0.000735 | 0.001000 | 0.000000 | 0 | 0 |
| end | 0.000008 | 0.000000 | 0.000000 | 0 | 0 |
| query end | 0.000008 | 0.000000 | 0.000000 | 0 | 0 |
| closing tables | 0.000009 | 0.000000 | 0.000000 | 0 | 0 |
| freeing items | 0.000023 | 0.000000 | 0.000000 | 0 | 0 |
| cleaning up | 0.000007 | 0.000000 | 0.000000 | 0 | 0 |
+----------------------+----------+----------+------------+--------------+---------------+
15 rows in set, 1 warning (0.00 sec)
从上面的profile 可以看出ICP 开启时整个sql 执行时间是未开启的2/3,sending data 环节的时间消耗前者仅是后者的1/4。
ICP 开启时的执行计划 含有 Using index condition 标示 ,表示优化器使用了ICP对数据访问进行优化。
mysql> explain select * from employees where first_name='Anneke' and last_name like '%nta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-----------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-----------------------+
| 1 | SIMPLE | employees | ref | idx_emp_fnln | idx_emp_fnln | 44 | const | 224 | Using index condition |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-----------------------+
1 row in set (0.00 sec)
ICP 关闭时的执行计划显示use where.
mysql> explain select * from employees where first_name='Anneke' and last_name like '%nta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-------------+
| 1 | SIMPLE | employees | ref | idx_emp_fnln | idx_emp_fnln | 44 | const | 224 | Using where |
+----+-------------+-----------+------+---------------+--------------+---------+-------+------+-------------+
1 row in set (0.00 sec)
案例分析
以上面的查询为例关闭ICP 时,存储引擎通前缀index first_name 访问表中225条first_name 为Anneke的数据,并在MySQL server层根据last_name like '%sig' 进行过滤
开启ICP 时,last_name 的like '%sig'条件可以通过索引字段last_name 进行过滤,在存储引擎内部通过与where条件的对比,直接过滤掉不符合条件的数据。该过程不回表,只访问符合条件的1条记录并返回给MySQL Server ,有效的减少了io访问和各层之间的交互。
ICP 关闭时 ,仅仅使用索引作为访问数据的方式。
ICP 开启时 ,MySQL将在存储引擎层 利用索引过滤数据,减少不必要的回表,注意 虚线的using where 表示如果where条件中含有没有被索引的字段,则还是要经过MySQL Server 层过滤。
四 ICP的使用限制
1 当sql需要全表访问时,ICP的优化策略可用于range, ref, eq_ref, ref_or_null 类型的访问数据方法 。
2 支持InnoDB和MyISAM表。
3 ICP只能用于二级索引,不能用于主索引。
4 并非全部where条件都可以用ICP筛选。
如果where条件的字段不在索引列中,还是要读取整表的记录到server端做where过滤。
5 ICP的加速效果取决于在存储引擎内通过ICP筛选掉的数据的比例。
6 5.6 版本的不支持分表的ICP 功能,5.7 版本的开始支持。
7 当sql 使用覆盖索引时,不支持ICP 优化方法。
mysql> explain select * from employees where first_name='Anneke' and last_name='Porenta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+-----------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+-----------------------+
| 1 | SIMPLE | employees | ref | idx_emp_fnln | idx_emp_fnln | 94 | const,const | 1 | Using index condition |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+-----------------------+
1 row in set (0.00 sec)
mysql> explain select first_name,last_name from employees where first_name='Anneke' and last_name='Porenta' ;
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+--------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+--------------------------+
| 1 | SIMPLE | employees | ref | idx_emp_fnln | idx_emp_fnln | 94 | const,const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+--------------+---------+-------------+------+--------------------------+
1 row in set (0.00 sec)


猜你喜欢
- 在该网站下载你所需要的mysql依赖驱动版本,比如我的QT版本是5.15就下5.15版的 按照你的Qt编译版本和机器位数进行下载,
- MySQL使用于认证目的的用户名,与Unix用户名(登录名字)或Windows用户名无关。缺省地,大多数MySQL客户尝试使用当前Unix用
- 下面就是博主的一些思路和解决办法,如果对此没兴趣,想直接使用jquery插件的同学,可以点这里思路每一种颜色由RGB组成,每两位为一个16进
- python在mysql中插入null空值sql = “INSERT INTO MROdata (MmeUeS1apId) VALUES (
- 1. 概述到目前为止,程序的API对任何人都可以编辑或删除,没有任何限制。我们希望有一些更高级的行为,进行身份验证和权限分配,以确保:数据始
- 1、下载安装MySQLdb类库http://www.djangoproject.com/r/python-mysql/2、修改setting
- 本文实例为大家分享了python实现简单聊天室的具体代码,供大家参考,具体内容如下刚刚接触python编程,又从接触java开始一直对soc
- JS继承 JavaScript中没有类的概念,与类相关的继承的概念更是无从谈起,但是我们可以通过特殊的语法来 模拟面向对象语言中的继承。 在
- 背景需要在文件夹中搜索某一文件,找到后返回此文件所在目录。用最常规的os.listdir()方式实现了一版,但执行时报错:递归超过最大深度。
- 1. 前言Docker在开发中使用的越来越多了,最近搞了一个Spring Boot应用,为了方便部署将Mysql也放在Docker中运行。那
- 常量是程序中最基础的元素,在定义之后就不能再重新赋值了。Go语言中的常量类型有布尔常量、整数常量、浮点数常量、 字符常量、字符串常量和复数常
- run() 方法并不启动一个新线程,就是在主线程中调用了一个普通函数而已。start() 方法是启动一个子线程,线程名就是自己定义的name
- 如何计算方差简单展示一下pandas里怎么计算方差:官方文档:def def_std(df): for ix,row in df
- 1.whl包whl格式本质上是一个压缩包,里面包含了py文件,以及经过编译的pyd文件。使得可以在不具备编译环境的情况下,选择适合自己的py
- 大家可以在Github上clone全部源码。Github:https://github.com/williamzxl/Scrapy_Craw
- pydev debugger: process 10341 is connecting无法debu今天在Pycharm中debug时无法正常
- 概述web项目,经常需要热启动各种各样的配置信息,一旦这些服务发生变更,我们需要重新启动web server,以使配置生效,实现配置热加载。
- 经常看见有人问,MSSQL占用了太多的内存,而且还不断的增长;或者说已经设置了使用内存,可是它没有用到那么多,这是怎么一回事儿呢? 首先,我
- 内容摘要:为什么要什么XML文件:其优势就是处理该XML数据的文档可以是静态文档,比如HTML文件通过Javascript、XMLDOM来解
- 这里介绍一个nii文件保存为png格式的方法。这篇文章是介绍多个nii文件保存为png格式的方法:https://www.jb51.net/