MySQL 多表关联一对多查询实现取最新一条数据的方法示例
作者:大爱我小宝哥 发布时间:2024-01-22 13:58:17
标签:MySQL,多表关联,一对多查询
本文实例讲述了MySQL 多表关联一对多查询实现取最新一条数据的方法。分享给大家供大家参考,具体如下:
MySQL 多表关联一对多查询取最新的一条数据
遇到的问题
多表关联一对多查询取最新的一条数据,数据出现重复
由于历史原因,表结构设计不合理;产品告诉我说需要导出客户信息数据,需要导出客户的 所属行业,纳税性质 数据;但是这两个字段却在订单表里面,每次客户下单都会要求客户填写;由此可知,客户数据和订单数据是一对多的关系;那这样的话,问题就来了,我到底以订单中的哪一条数据为准呢?经过协商后一致同意以最新的一条数据为准;
数据测试初始化SQL脚本
DROP TABLE IF EXISTS `customer`;
CREATE TABLE `customer` (
`id` BIGINT NOT NULL COMMENT '客户ID',
`real_name` VARCHAR(20) NOT NULL COMMENT '客户名字',
`create_time` DATETIME NOT NULL COMMENT '创建时间',
PRIMARY KEY(`id`)
)ENGINE=INNODB DEFAULT CHARSET = UTF8 COMMENT '客户信息表';
-- DATA FOR TABLE customer
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7717194510959685632', '张三', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7718605481599623168', '李四', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7720804666226278400', '王五', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7720882041353961472', '刘六', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722233303626055680', '宝宝', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722233895811448832', '小宝', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722234507982700544', '大宝', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722234927631204352', '二宝', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722235550724423680', '小贱', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722235921488314368', '小明', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722238233975881728', '小黑', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722246644138409984', '小红', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722318634321346560', '阿狗', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722318674321346586', '阿娇', '2019-01-23 16:23:05');
INSERT INTO `demo`.`customer` (`id`, `real_name`, `create_time`) VALUES ('7722318974421546780', '阿猫', '2019-01-23 16:23:05');
DROP TABLE IF EXISTS `order_info`;
CREATE TABLE `order_info` (
`id` BIGINT NOT NULL COMMENT '订单ID',
`industry` VARCHAR(255) DEFAULT NULL COMMENT '所属行业',
`nature_tax` VARCHAR(255) DEFAULT NULL COMMENT '纳税性质',
`customer_id` VARCHAR(20) NOT NULL COMMENT '客户ID',
`create_time` DATETIME NOT NULL COMMENT '创建时间',
PRIMARY KEY(`id`)
)ENGINE=INNODB DEFAULT CHARSET = UTF8 COMMENT '订单信息表';
-- DATA FOR TABLE order_info
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700163609453207552', '餐饮酒店类', '小规模', '7717194510959685632', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700163609453207553', '餐饮酒店类', '小规模', '7717194510959685632', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700167995646615552', '高新技术', '一般纳税人', '7718605481599623168', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700167995646615553', '商贸', '一般纳税人', '7718605481599623168', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700193633216569344', '商贸', '一般纳税人', '7720804666226278400', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700193633216569345', '高新技术', '一般纳税人', '7720804666226278400', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700197875671179264', '餐饮酒店类', '一般纳税人', '7720882041353961472', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7700197875671179266', '餐饮酒店类', '一般纳税人', '7720882041353961472', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7703053372673171456', '高新技术', '小规模', '7722233303626055680', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7703053372673171457', '高新技术', '小规模', '7722233303626055680', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709742385262698496', '服务类', '一般纳税人', '7722233895811448832', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709742385262698498', '服务类', '一般纳税人', '7722233895811448832', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745055683780608', '高新技术', '小规模', '7722234507982700544', '2019-01-23 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745055683780609', '进出口', '小规模', '7722234507982700544', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745249439653888', '文化体育', '一般纳税人', '7722234927631204352', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745249439653889', '高新技术', '一般纳税人', '7722234927631204352', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745453266051072', '高新技术', '小规模', '7722235550724423680', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745453266051073', '文化体育', '小规模', '7722235550724423680', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745539848413184', '科技', '一般纳税人', '7722235921488314368', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745539848413185', '高新技术', '一般纳税人', '7722235921488314368', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745652603887616', '高新技术', '一般纳税人', '7722238233975881728', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745652603887617', '科技', '一般纳税人', '7722238233975881728', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745755528568832', '进出口', '一般纳税人', '7722246644138409984', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745755528568833', '教育咨询', '小规模', '7722246644138409984', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745892539047936', '教育咨询', '一般纳税人', '7722318634321346560', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709745892539047937', '进出口', '一般纳税人', '7722318634321346560', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709746000127139840', '生产类', '小规模', '7722318674321346586', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709746000127139841', '农业', '一般纳税人', '7722318674321346586', '2019-01-23 17:09:53');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709746447445467136', '农业', '一般纳税人', '7722318974421546780', '2019-01-24 16:54:25');
INSERT INTO `demo`.`order_info` (`id`, `industry`, `nature_tax`, `customer_id`, `create_time`) VALUES ('7709746447445467137', '生产类', '小规模', '7722318974421546780', '2019-01-23 17:09:53');
按需求写的SQL语句:
UPDATE order_info SET create_time = NOW();
尝试解决问题
SELECT
cr.id,
cr.real_name,
oi.industry,
oi.nature_tax
FROM
customer AS cr
LEFT JOIN (
SELECT a.industry, a.nature_tax, a.customer_id, a.create_time FROM order_info AS a
LEFT JOIN (
SELECT MAX(create_time) AS create_time, customer_id FROM order_info GROUP BY customer_id
) AS b ON a.customer_id = b.customer_id
WHERE a.create_time = b.create_time
) AS oi ON oi.customer_id = cr.id
GROUP BY cr.id;
数据重复嘛,小意思,加个 GROUP BY 不就解决了吗?我怎么会这么机智,哈哈哈!!!但是当我执行完SQL的那一瞬间,我又懵逼了,查询出来的结果中 所属行业,纳税性质 仍然不是最新的;看来是我想太多了,还是老老实实的解决问题吧。。。
找出重复数据
SELECT
cr.id,
cr.real_name,
oi.industry,
oi.nature_tax
FROM
customer AS cr
LEFT JOIN (
SELECT a.industry, a.nature_tax, a.customer_id, a.create_time FROM order_info AS a
LEFT JOIN (
SELECT MAX(create_time) AS create_time, customer_id FROM order_info GROUP BY customer_id
) AS b ON a.customer_id = b.customer_id
WHERE a.create_time = b.create_time
) AS oi ON oi.customer_id = cr.id
GROUP BY cr.id HAVING COUNT(cr.id) >= 2;
执行结果如下:
SELECT
cr.id,
cr.real_name,
oi.industry,
oi.nature_tax
FROM
customer AS cr
LEFT JOIN (
SELECT a.industry, a.nature_tax, a.customer_id, a.create_time FROM order_info AS a
LEFT JOIN (
SELECT MAX(id) AS id, customer_id FROM order_info GROUP BY customer_id
) AS b ON a.customer_id = b.customer_id
WHERE a.id = b.id
) AS oi ON oi.customer_id = cr.id;
哎,终于解决了。。。
希望本文所述对大家MySQL数据库计有所帮助。
来源:https://blog.csdn.net/u013902368/article/details/86615382


猜你喜欢
- 一、pycharm字体放大的设置File —>setting —> Keymap —>在搜寻框中输入increase —&
- 在安装数据库的时候出现了如下错误:解决办法如下:1.在bin目录下 输入:kill -s 9 9907 再输入:ps
- 在web开发的时候我们经常会遇到网页抓取和分析,各种语言都可以完成这个功能。我喜欢用python实现,因为python提供了很多成熟的模块,
- 一、什么是上下文管理器我们在处理文件的时候经常看到下面这样的代码,它即是上下文管理器:with open('test.txt'
- 一、两表之间若有关联,你是否还在用主键进行关联? 比如现在有2张表,一张新闻栏目表,一张新闻表,现在两张表需要进行关联,我想大多数人的做法肯
- python的uuid都是32位的,比较长,处理起来效率比较低,本算法利用62个可打印字符,通过随机生成32位UUID,由于UUID都为十六
- groupby官方解释DataFrame.groupby(by=None, axis=0, level=None, as_index=Tru
- sql server 锁定模式有三种:共享( S锁),更新(U锁),排他(X锁);S锁是共享锁,如果事务T对数据A加上共享锁后,则其他事务只
- sql语句查询数据库中的表名/列名/主键/自动增长值 ----查询数据库中用户创建的表 ----jsj01 为数据库名 select nam
- 第一步:首先定义一个视图函数,用于提供数据,实现每页显示数据个数,返回每页请求数据from django.shortcuts import
- 如下所示:# -*- coding: utf-8 -*-# @Time :18-8-2 下午3:23import sysreload(sys
- 物体跟踪效果展示 过程:一、初始化def Motor_Init(): global L_Motor, R
- 1、grid 布局说明:参数说明: sticky:在插件正常尺寸下,分配单元中多余的空间(如果没有声明属性,默认插
- 信息架构的组件可以拆分成四类组织系统 如何组织信息,例如,依据主题或年代顺序。标签系统 如何表示信息,例如,科学术语(“Acer”)或通俗术
- 前言PyTorch作为一款深度学习框架,已经帮助我们实现了很多很多的功能了,包括数据的读取和转换了,那么这一章节就介绍一下PyTorch内置
- 本文实例讲述了Python实现队列的方法。分享给大家供大家参考,具体如下:Python实现队列队列(FIFO),添加元素在队列尾,删除元素在
- code原文档 1.txt :HelloNanjing100实现代码:file_ = "1.txt"r_file = o
- 很多人可能发现,无论是在sql 2000, 还是在 sql 2005 中,都没有提供字符串的聚合函数, 所以, 当我们在处理下列要求时,会比
- 本文实例讲述了Python常用模块sys,os,time,random功能与用法。分享给大家供大家参考,具体如下:sys:介绍:主要包含涉及
- 等了好久终于等到了V8,赶紧测测效果,放张官网的比对图官网链接https://github.com/ultralytics/ultralyt