举例讲解Python中的死锁、可重入锁和互斥锁
作者:goldensun 发布时间:2023-12-21 07:35:03
一、死锁
简单来说,死锁是一个资源被多次调用,而多次调用方都未能释放该资源就会造成死锁,这里结合例子说明下两种常见的死锁情况。
1、迭代死锁
该情况是一个线程“迭代”请求同一个资源,直接就会造成死锁:
import threading
import time
class MyThread(threading.Thread):
def run(self):
global num
time.sleep(1)
if mutex.acquire(1):
num = num+1
msg = self.name+' set num to '+str(num)
print msg
mutex.acquire()
mutex.release()
mutex.release()
num = 0
mutex = threading.Lock()
def test():
for i in range(5):
t = MyThread()
t.start()
if __name__ == '__main__':
test()
上例中,在run函数的if判断中第一次请求资源,请求后还未 release ,再次acquire,最终无法释放,造成死锁。这里例子中通过将print下面的两行注释掉就可以正常执行了 ,除此之外也可以通过可重入锁解决,后面会提到。
2、互相调用死锁
上例中的死锁是在同一个def函数内多次调用造成的,另一种情况是两个函数中都会调用相同的资源,互相等待对方结束的情况。如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁。
import threading
import time
class MyThread(threading.Thread):
def do1(self):
global resA, resB
if mutexA.acquire():
msg = self.name+' got resA'
print msg
if mutexB.acquire(1):
msg = self.name+' got resB'
print msg
mutexB.release()
mutexA.release()
def do2(self):
global resA, resB
if mutexB.acquire():
msg = self.name+' got resB'
print msg
if mutexA.acquire(1):
msg = self.name+' got resA'
print msg
mutexA.release()
mutexB.release()
def run(self):
self.do1()
self.do2()
resA = 0
resB = 0
mutexA = threading.Lock()
mutexB = threading.Lock()
def test():
for i in range(5):
t = MyThread()
t.start()
if __name__ == '__main__':
test()
这个死锁的示例稍微有点复杂。具体可以理下。
二、可重入锁
为了支持在同一线程中多次请求同一资源,python提供了“可重入锁”:threading.RLock。RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。直到一个线程所有的acquire都被release,其他的线程才能获得资源。这里以例1为例,如果使用RLock代替Lock,则不会发生死锁:
import threading
import time
class MyThread(threading.Thread):
def run(self):
global num
time.sleep(1)
if mutex.acquire(1):
num = num+1
msg = self.name+' set num to '+str(num)
print msg
mutex.acquire()
mutex.release()
mutex.release()
num = 0
mutex = threading.RLock()
def test():
for i in range(5):
t = MyThread()
t.start()
if __name__ == '__main__':
test()
和上面那个例子的不同之处在于threading.Lock()换成了threading.RLock() 。
三、互斥锁
python threading模块有两类锁:互斥锁(threading.Lock )和可重用锁(threading.RLock)。两者的用法基本相同,具体如下:
lock = threading.Lock()
lock.acquire()
dosomething……
lock.release()
RLock的用法是将threading.Lock()修改为threading.RLock()。便于理解,先来段代码:
[root@361way lock]# cat lock1.py
#!/usr/bin/env python
# coding=utf-8
import threading # 导入threading模块
import time # 导入time模块
class mythread(threading.Thread): # 通过继承创建类
def __init__(self,threadname): # 初始化方法
# 调用父类的初始化方法
threading.Thread.__init__(self,name = threadname)
def run(self): # 重载run方法
global x # 使用global表明x为全局变量
for i in range(3):
x = x + 1
time.sleep(5) # 调用sleep函数,让线程休眠5秒
print x
tl = [] # 定义列表
for i in range(10):
t = mythread(str(i)) # 类实例化
tl.append(t) # 将类对象添加到列表中
x=0 # 将x赋值为0
for i in tl:
i.start()
这里执行的结果和想想的不同,结果如下:
[root@361way lock]# python lock1.py
30
30
30
30
30
30
30
30
30
30
为什么结果都是30呢?关键在于global 行和 time.sleep行。
1、由于x是一个全局变量,所以每次循环后 x 的值都是执行后的结果值;
2、由于该代码是多线程的操作,所以在sleep 等待的时候,之前已经执行完成的线程会在这等待,而后续的进程在等待的5秒这段时间也执行完成 ,等待print。同样由于global 的原理,x被重新斌值。所以打印出的结果全是30 ;
3、便于理解,可以尝试将sleep等注释,你再看下结果,就会发现有不同。
在实际应用中,如抓取程序等,也会出现类似于sleep等待的情况。在前后调用有顺序或打印有输出的时候,就会现并发竞争,造成结果或输出紊乱。这里就引入了锁的概念,上面的代码修改下,如下:
[root@361way lock]# cat lock2.py
#!/usr/bin/env python
# coding=utf-8
import threading # 导入threading模块
import time # 导入time模块
class mythread(threading.Thread): # 通过继承创建类
def __init__(self,threadname): # 初始化方法
threading.Thread.__init__(self,name = threadname)
def run(self): # 重载run方法
global x # 使用global表明x为全局变量
lock.acquire() # 调用lock的acquire方法
for i in range(3):
x = x + 1
time.sleep(5) # 调用sleep函数,让线程休眠5秒
print x
lock.release() # 调用lock的release方法
lock = threading.Lock() # 类实例化
tl = [] # 定义列表
for i in range(10):
t = mythread(str(i)) # 类实例化
tl.append(t) # 将类对象添加到列表中
x=0 # 将x赋值为0
for i in tl:
i.start() # 依次运行线程
执行的结果如下:
[root@361way lock]# python lock2.py
3
6
9
12
15
18
21
24
27
30
加锁的结果会造成阻塞,而且会造成开锁大。会根据顺序由并发的多线程按顺序输出,如果后面的线程执行过快,需要等待前面的进程结束后其才能结束 --- 写的貌似有点像队列的概念了 ,不过在加锁的很多场景下确实可以通过队列去解决。
猜你喜欢
- 学习了一点opencv的知识于是找了个小项目来实践一下。这里先说明一下,我的实现方法不见得是最好的(因为这只是一个用于练习的项目)仅作参考,
- 本文实例讲述了JS笛卡尔积算法与多重数组笛卡尔积实现方法。分享给大家供大家参考,具体如下:js 笛卡尔积算法的实现代码,据对象或者数组生成笛
- 本文实例讲述了python统计一个文本中重复行数的方法。分享给大家供大家参考。具体实现方法如下:比如有下面一个文件2312我们期望得到2,2
- Tornado 4.0 已经发布了很长一段时间了, 新版本广泛的应用了协程(Future)特性. 我们目前已经将 Tornado 升级到最新
- 如果是在Oracle10g之前,删除一个表空间中的数据文件后,其文件在数据库数据字典中会仍然存在,除非你删除表空间,否则文件信息不会清除。但
- Elasticsearch是一个分布式、Restful的搜索及分析服务器,Apache Solr一样,它也是基于Lucence的索引服务器,
- 如 现有字符串 "[]aseabcd[12345]ddxabcdsx[]",要截取"abcd[" 和
- gitignore是什么文件就是git软件要忽略的文件列表,如果要忽略某些文件,,在Git工作区的根目录下创建一个特殊的.gitignore
- 1. 为什么需要Simhash?传统相似度算法:文本相似度的计算,一般使用向量空间模型(VSM),先对文本分词,提取特征,根据特征建立文本向
- Python局部函数及用法通过前面的学习我们知道,Python 函数内部可以定义变量,这样就产生了局部变量,有读者可能会问,Python 函
- Ranorex测试报告如何发送到邮箱在网上看了下,其实可以通过在Ranorex上或者VS调用编写发送邮箱代码就可以执行发送了,RX主要涉及到
- 一、定义集合中的元素是无序的、唯一的、不可变的类型。集合是一个特殊的列表,可以对数据去重。lists = [1,3,5,7,3,4,6,2,
- 用户不想输入账号密码,一键登录 <label for="" @click="LoginDL&q
- 问题复现:连接钱包后,会调用函数,弹出窗口让用户签名if (signatureMessage) {
- 有些时候因为某些原因(如本地机器资源不足、数据不能离网等),需要使用本地电脑连接远程服务器进行开发工作,在这里记录下如何在远程Linux上配
- (一)说在前面 Python自带了GUI模块Tkinter,只是界面风格有些老旧。另外就是各种GUI框架
- 在本身比较复杂的页面里,再突出信息,往往是把几种方法叠加起来使用,比如加粗加大、加粗加色等,区别在于使用的类别和程度。导致的结果是呈现越来越
- 顺序表即线性表的顺序存储结构。它是通过一组地址连续的存储单元对线性表中的数据进行存储的,相邻的两个元素在物理位置上也是相邻的。比如,第1个元
- 本文实例为大家分享了用KNN算法手写体识别的具体代码,供大家参考,具体内容如下#!/usr/bin/python #coding:utf-8
- 本文实例讲述了Python 多线程,threading模块,创建子线程的两种方式。分享给大家供大家参考,具体如下:GIL(全局解释器锁)是C