网络编程
位置:首页>> 网络编程>> Python编程>> python PyGame五子棋小游戏

python PyGame五子棋小游戏

作者:Lucifer三思而后行  发布时间:2023-09-29 13:32:45 

标签:python,pygame,五子棋

前言

PyGame 是一个专门设计来进行游戏开发设计的 Python 模块,允许实时电子游戏研发而无需被低级语言(如机器语言和汇编语言)束缚,使用起来非常的简单,非常适合新手拿来玩耍,本教程源码均基于 Python 3.x 版本。

五子棋小游戏

1、简介

五子棋是我们小时候经常玩的两人对弈策略小游戏,规则简单:

1、对局双方各执一色棋子,常为黑白两色;2、空棋盘开局;3、黑先、白后,交替下子,每次只能下一子;4、棋子下在棋盘的空白点上,棋子下定后,不得向其它点移动,不得从棋盘上拿掉或拿起另落别处;5、黑方的第一枚棋子可下在棋盘任意交叉点上;6、轮流下子是双方的权利,但允许任何一方放弃下子权,先形成5子连线者获胜;

五子棋容易上手,规则简单,老少皆宜,而且趣味横生,引人入胜。它不仅能增强思维能力,提高智力,而且富含哲理,有助于修身养性。

2、环境准备

本次教程需要提前安装好 Python 3.x 环境以及 PyGame 模块,Python 环境建议安装 Anaconda 以及 Jupyter,对于新手比较友好!

pip install jupyter
pip install pygame

安装好 PyGame 模块之后,咱们就可以正式开写了!

3、初始化环境

首先需要引入以下模块:

import sys
import random
import pygame
from pygame.locals import *
import pygame.gfxdraw
from collections import namedtuple

接着我们初始化棋盘的一些变量,便于下面写代码:

Chessman = namedtuple('Chessman', 'Name Value Color')
Point = namedtuple('Point', 'X Y')

BLACK_CHESSMAN = Chessman('黑子', 1, (45, 45, 45))
WHITE_CHESSMAN = Chessman('白子', 2, (219, 219, 219))

offset = [(1, 0), (0, 1), (1, 1), (1, -1)]

SIZE = 30  # 棋盘每个点时间的间隔
Line_Points = 19  # 棋盘每行/每列点数
Outer_Width = 20  # 棋盘外宽度
Border_Width = 4  # 边框宽度
Inside_Width = 4  # 边框跟实际的棋盘之间的间隔
Border_Length = SIZE * (Line_Points - 1) + Inside_Width * 2 + Border_Width  # 边框线的长度
Start_X = Start_Y = Outer_Width + int(Border_Width / 2) + Inside_Width  # 网格线起点(左上角)坐标
SCREEN_HEIGHT = SIZE * (Line_Points - 1) + Outer_Width * 2 + Border_Width + Inside_Width * 2  # 游戏屏幕的高
SCREEN_WIDTH = SCREEN_HEIGHT + 200  # 游戏屏幕的宽

Stone_Radius = SIZE // 2 - 3  # 棋子半径
Stone_Radius2 = SIZE // 2 + 3
Checkerboard_Color = (0xE3, 0x92, 0x65)  # 棋盘颜色
BLACK_COLOR = (0, 0, 0)
WHITE_COLOR = (255, 255, 255)
RED_COLOR = (200, 30, 30)
BLUE_COLOR = (30, 30, 200)

RIGHT_INFO_POS_X = SCREEN_HEIGHT + Stone_Radius2 * 2 + 10

4、棋盘

通过上述变量画出棋盘,主要源码如下:

# 画棋盘
def _draw_checkerboard(screen):
   # 填充棋盘背景色
   screen.fill(Checkerboard_Color)
   # 画棋盘网格线外的边框
   pygame.draw.rect(screen, BLACK_COLOR, (Outer_Width, Outer_Width, Border_Length, Border_Length), Border_Width)
   # 画网格线
   for i in range(Line_Points):
       pygame.draw.line(screen, BLACK_COLOR,
                        (Start_Y, Start_Y + SIZE * i),
                        (Start_Y + SIZE * (Line_Points - 1), Start_Y + SIZE * i),
                        1)
   for j in range(Line_Points):
       pygame.draw.line(screen, BLACK_COLOR,
                        (Start_X + SIZE * j, Start_X),
                        (Start_X + SIZE * j, Start_X + SIZE * (Line_Points - 1)),
                        1)
   # 画星位和天元
   for i in (3, 9, 15):
       for j in (3, 9, 15):
           if i == j == 9:
               radius = 5
           else:
               radius = 3
           # pygame.draw.circle(screen, BLACK, (Start_X + SIZE * i, Start_Y + SIZE * j), radius)
           pygame.gfxdraw.aacircle(screen, Start_X + SIZE * i, Start_Y + SIZE * j, radius, BLACK_COLOR)
           pygame.gfxdraw.filled_circle(screen, Start_X + SIZE * i, Start_Y + SIZE * j, radius, BLACK_COLOR)

5、黑白棋子

有了棋盘当然少不了黑白棋子,比较简单:

# 画棋子
def _draw_chessman(screen, point, stone_color):
   # pygame.draw.circle(screen, stone_color, (Start_X + SIZE * point.X, Start_Y + SIZE * point.Y), Stone_Radius)
   pygame.gfxdraw.aacircle(screen, Start_X + SIZE * point.X, Start_Y + SIZE * point.Y, Stone_Radius, stone_color)
   pygame.gfxdraw.filled_circle(screen, Start_X + SIZE * point.X, Start_Y + SIZE * point.Y, Stone_Radius, stone_color)

6、对局信息

每一局游戏不可缺少的就是双方玩家的对局信息,主要展示双方的黑白执子以及战况,关键源码如下:

# 画左侧信息显示
def _draw_left_info(screen, font, cur_runner, black_win_count, white_win_count):
   _draw_chessman_pos(screen, (SCREEN_HEIGHT + Stone_Radius2, Start_X + Stone_Radius2), BLACK_CHESSMAN.Color)
   _draw_chessman_pos(screen, (SCREEN_HEIGHT + Stone_Radius2, Start_X + Stone_Radius2 * 4), WHITE_CHESSMAN.Color)

print_text(screen, font, RIGHT_INFO_POS_X, Start_X + 3, '玩家', BLUE_COLOR)
   print_text(screen, font, RIGHT_INFO_POS_X, Start_X + Stone_Radius2 * 3 + 3, '电脑', BLUE_COLOR)

print_text(screen, font, SCREEN_HEIGHT, SCREEN_HEIGHT - Stone_Radius2 * 8, '战况:', BLUE_COLOR)
   _draw_chessman_pos(screen, (SCREEN_HEIGHT + Stone_Radius2, SCREEN_HEIGHT - int(Stone_Radius2 * 4.5)), BLACK_CHESSMAN.Color)
   _draw_chessman_pos(screen, (SCREEN_HEIGHT + Stone_Radius2, SCREEN_HEIGHT - Stone_Radius2 * 2), WHITE_CHESSMAN.Color)
   print_text(screen, font, RIGHT_INFO_POS_X, SCREEN_HEIGHT - int(Stone_Radius2 * 5.5) + 3, f'{black_win_count} 胜', BLUE_COLOR)
   print_text(screen, font, RIGHT_INFO_POS_X, SCREEN_HEIGHT - Stone_Radius2 * 3 + 3, f'{white_win_count} 胜', BLUE_COLOR)

def _draw_chessman_pos(screen, pos, stone_color):
   pygame.gfxdraw.aacircle(screen, pos[0], pos[1], Stone_Radius2, stone_color)
   pygame.gfxdraw.filled_circle(screen, pos[0], pos[1], Stone_Radius2, stone_color)

画出来的整体效果如下:

python PyGame五子棋小游戏

至此,整个棋盘的布局就完成了!

7、AI

由于咱们的小游戏不可以联机,因此大部分时间应该都是人机对下,这样就需要引入 AI 人机,让电脑作为对手陪我们下棋,主要源码如下:

class AI:
   def __init__(self, line_points, chessman):
       self._line_points = line_points
       self._my = chessman
       self._opponent = BLACK_CHESSMAN if chessman == WHITE_CHESSMAN else WHITE_CHESSMAN
       self._checkerboard = [[0] * line_points for _ in range(line_points)]

def get_opponent_drop(self, point):
       self._checkerboard[point.Y][point.X] = self._opponent.Value

def AI_drop(self):
       point = None
       score = 0
       for i in range(self._line_points):
           for j in range(self._line_points):
               if self._checkerboard[j][i] == 0:
                   _score = self._get_point_score(Point(i, j))
                   if _score > score:
                       score = _score
                       point = Point(i, j)
                   elif _score == score and _score > 0:
                       r = random.randint(0, 100)
                       if r % 2 == 0:
                           point = Point(i, j)
       self._checkerboard[point.Y][point.X] = self._my.Value
       return point

def _get_point_score(self, point):
       score = 0
       for os in offset:
           score += self._get_direction_score(point, os[0], os[1])
       return score

def _get_direction_score(self, point, x_offset, y_offset):
       count = 0   # 落子处我方连续子数
       _count = 0  # 落子处对方连续子数
       space = None   # 我方连续子中有无空格
       _space = None  # 对方连续子中有无空格
       both = 0    # 我方连续子两端有无阻挡
       _both = 0   # 对方连续子两端有无阻挡

# 如果是 1 表示是边上是我方子,2 表示敌方子
       flag = self._get_stone_color(point, x_offset, y_offset, True)
       if flag != 0:
           for step in range(1, 6):
               x = point.X + step * x_offset
               y = point.Y + step * y_offset
               if 0 <= x < self._line_points and 0 <= y < self._line_points:
                   if flag == 1:
                       if self._checkerboard[y][x] == self._my.Value:
                           count += 1
                           if space is False:
                               space = True
                       elif self._checkerboard[y][x] == self._opponent.Value:
                           _both += 1
                           break
                       else:
                           if space is None:
                               space = False
                           else:
                               break   # 遇到第二个空格退出
                   elif flag == 2:
                       if self._checkerboard[y][x] == self._my.Value:
                           _both += 1
                           break
                       elif self._checkerboard[y][x] == self._opponent.Value:
                           _count += 1
                           if _space is False:
                               _space = True
                       else:
                           if _space is None:
                               _space = False
                           else:
                               break
               else:
                   # 遇到边也就是阻挡
                   if flag == 1:
                       both += 1
                   elif flag == 2:
                       _both += 1

if space is False:
           space = None
       if _space is False:
           _space = None

_flag = self._get_stone_color(point, -x_offset, -y_offset, True)
       if _flag != 0:
           for step in range(1, 6):
               x = point.X - step * x_offset
               y = point.Y - step * y_offset
               if 0 <= x < self._line_points and 0 <= y < self._line_points:
                   if _flag == 1:
                       if self._checkerboard[y][x] == self._my.Value:
                           count += 1
                           if space is False:
                               space = True
                       elif self._checkerboard[y][x] == self._opponent.Value:
                           _both += 1
                           break
                       else:
                           if space is None:
                               space = False
                           else:
                               break   # 遇到第二个空格退出
                   elif _flag == 2:
                       if self._checkerboard[y][x] == self._my.Value:
                           _both += 1
                           break
                       elif self._checkerboard[y][x] == self._opponent.Value:
                           _count += 1
                           if _space is False:
                               _space = True
                       else:
                           if _space is None:
                               _space = False
                           else:
                               break
               else:
                   # 遇到边也就是阻挡
                   if _flag == 1:
                       both += 1
                   elif _flag == 2:
                       _both += 1

score = 0
       if count == 4:
           score = 10000
       elif _count == 4:
           score = 9000
       elif count == 3:
           if both == 0:
               score = 1000
           elif both == 1:
               score = 100
           else:
               score = 0
       elif _count == 3:
           if _both == 0:
               score = 900
           elif _both == 1:
               score = 90
           else:
               score = 0
       elif count == 2:
           if both == 0:
               score = 100
           elif both == 1:
               score = 10
           else:
               score = 0
       elif _count == 2:
           if _both == 0:
               score = 90
           elif _both == 1:
               score = 9
           else:
               score = 0
       elif count == 1:
           score = 10
       elif _count == 1:
           score = 9
       else:
           score = 0

if space or _space:
           score /= 2

return score

# 判断指定位置处在指定方向上是我方子、对方子、空
   def _get_stone_color(self, point, x_offset, y_offset, next):
       x = point.X + x_offset
       y = point.Y + y_offset
       if 0 <= x < self._line_points and 0 <= y < self._line_points:
           if self._checkerboard[y][x] == self._my.Value:
               return 1
           elif self._checkerboard[y][x] == self._opponent.Value:
               return 2
           else:
               if next:
                   return self._get_stone_color(Point(x, y), x_offset, y_offset, False)
               else:
                   return 0
       else:
           return 0

8、完善

最后就是对规则的一些完善,比如落子,判断输赢以及胜利界面之类的编写,关键源码如下:

class Checkerboard:
   def __init__(self, line_points):
       self._line_points = line_points
       self._checkerboard = [[0] * line_points for _ in range(line_points)]

def _get_checkerboard(self):
       return self._checkerboard

checkerboard = property(_get_checkerboard)

# 判断是否可落子
   def can_drop(self, point):
       return self._checkerboard[point.Y][point.X] == 0

def drop(self, chessman, point):
       """
       落子
       :param chessman:
       :param point:落子位置
       :return:若该子落下之后即可获胜,则返回获胜方,否则返回 None
       """
       print(f'{chessman.Name} ({point.X}, {point.Y})')
       self._checkerboard[point.Y][point.X] = chessman.Value

if self._win(point):
           print(f'{chessman.Name}获胜')
           return chessman

# 判断是否赢了
   def _win(self, point):
       cur_value = self._checkerboard[point.Y][point.X]
       for os in offset:
           if self._get_count_on_direction(point, cur_value, os[0], os[1]):
               return True

def _get_count_on_direction(self, point, value, x_offset, y_offset):
       count = 1
       for step in range(1, 5):
           x = point.X + step * x_offset
           y = point.Y + step * y_offset
           if 0 <= x < self._line_points and 0 <= y < self._line_points and self._checkerboard[y][x] == value:
               count += 1
           else:
               break
       for step in range(1, 5):
           x = point.X - step * x_offset
           y = point.Y - step * y_offset
           if 0 <= x < self._line_points and 0 <= y < self._line_points and self._checkerboard[y][x] == value:
               count += 1
           else:
               break

return count >= 5

至此,整个游戏就已经制作完成,下面我们可以试玩一下:

python PyGame五子棋小游戏

说来惭愧,竟不敌人机,再来一局,胜天半子,终于赢了!

python PyGame五子棋小游戏

来源:https://blog.csdn.net/m0_50546016/article/details/122525287

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com