网络编程
位置:首页>> 网络编程>> Python编程>> Tensorflow的常用矩阵生成方式

Tensorflow的常用矩阵生成方式

作者:windows2  发布时间:2023-03-27 16:03:55 

标签:Tensorflow,矩阵,生成

我就废话不多说了,直接上代码吧!


#全0和全1矩阵

v1 = tf.Variable(tf.zeros([3,3,3]), name="v1")

v2 = tf.Variable(tf.ones([10,5]), name="v2")

#填充单值矩阵
v3 = tf.Variable(tf.fill([2,3], 9))

#常量矩阵
v4_1 = tf.constant([1, 2, 3, 4, 5, 6, 7])
v4_2 = tf.constant(-1.0, shape=[2, 3])

# 和v4_1形状一样的全1或全0矩阵

v5_1=tf.ones_like(v4_1)

v5_2=tf.zeros_like(v4_1)

#生成等差数列
v6_1 = tf.linspace(10.0, 12.0, 30, name="linspace")#float32 or float64
v7_1 = tf.range(10, 20, 3)#just int32

#生成各种随机数据矩阵

#平均分布

v8_1 = tf.Variable(tf.random_uniform([2,4], minval=0.0, maxval=2.0, dtype=tf.float32, seed=1234, name="v8_1"))
#正态分布

v8_2 = tf.Variable(tf.random_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_2"))

#正态分布,但是去掉2sigma外的数字

v8_3 = tf.Variable(tf.truncated_normal([2,3], mean=0.0, stddev=1.0, dtype=tf.float32, seed=1234, name="v8_3"))

#把这3个行重排列
v8_5 = tf.random_shuffle([[1,2,3],[4,5,6],[6,6,6]], seed=134, name="v8_5")

以上都是计算图中的变量,需要sess.run()以后才能成为真正的数据

存取方式是:


np.save("v1.npy",sess.run(v1))#numpy save v1 as file
test_a = np.load("v1.npy")
print test_a[1,2]

这篇Tensorflow的常用矩阵生成方式就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持脚本之家。

来源:https://blog.csdn.net/windows2/article/details/78664779

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com