网络编程
位置:首页>> 网络编程>> Python编程>> Python3多线程处理爬虫的实战

Python3多线程处理爬虫的实战

作者:我才是李叔  发布时间:2023-08-16 02:16:21 

标签:Python3,多线程爬虫

多线程

到底什么是多线程?说起多线程我们首先从单线程来说。例如,我在这里看书,等这件事情干完,我就再去听音乐。对于这两件事情来说都是属于单线程,是一个完成了再接着完成下一个。但是我一般看书一边听歌,同时进行,这个就属于多线程了。

在爬虫过程中,如果只使用单线程进行爬取,效率会比较低下,因此多线程的爬虫处理方式更为常用。Python3提供了threading模块来支持多线程编程,以下是使用Python3多线程处理爬虫的一般步骤:

导入依赖模块

import threading
import requests
from queue import Queue

构建爬虫类

class Spider:
   def __init__(self):
       self.urls = Queue()  # 待爬取的链接队列
       self.results = []  # 存储爬取结果的列表
       self.lock = threading.Lock()  # 线程锁
       self.headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'}

# 获取链接列表
   def get_urls(self):
       # 这里可以从文件、数据库、网页等方式获取待爬取的链接
       # 这里以一个示例链接列表作为例子
       urls = ['<https://www.example.com/page1>', '<https://www.example.com/page2>', '<https://www.example.com/page3>']
       for url in urls:
           self.urls.put(url)

# 爬取页面并处理结果
   def crawl(self):
       while not self.urls.empty():
           url = self.urls.get()
           try:
               response = requests.get(url, headers=self.headers)
               # 这里可以对response进行解析,获取需要的信息
               # 这里以抓取页面title作为例子
               title = response.text.split('<title>')[1].split('</title>')[0]
               self.results.append(title)
           except Exception as e:
               print(e)
           finally:
               self.urls.task_done()

# 启动多线程爬虫
   def run(self, thread_num=10):
       self.get_urls()
       for i in range(thread_num):
           t = threading.Thread(target=self.crawl)
           t.start()
       self.urls.join()

# 将结果写入文件或者数据库
       with self.lock:
           with open('result.txt', 'a') as f:
               for result in self.results:
                   f.write(result + '\\n')

来源:https://blog.csdn.net/qq_56920529/article/details/129201627

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com