Python常见MongoDB数据库操作实例总结
作者:喷跑的豆子 发布时间:2023-07-08 08:48:34
本文实例讲述了Python常见MongoDB数据库操作。分享给大家供大家参考,具体如下:
MongoDB 是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。
MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当 * 能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能。接下来记录一下在使用PyMongo操作MongoDB
下载pymongo库
pip install pymongo
前置操作
# 获取MongoDB操作,localhost为host,27017为MongoDB默认port
client = pymongo.MongoClient("mongodb://localhost:27017/")
# 操作test数据库
db = client.test
# 获取Student集合
student = db.Student
插入单条数据
# 插入一条数据,并获取返回结果
res = student.insert_one({"name":"老王"})
# 获取插入之后该条数据的id
object_id = res.inserted_id
print(object_id)
插入多条数据
# 插入9条数据
res = student.insert_many([{"name":"name%d"%index} for index in range(1,10)])
# 获取插入之后该9条数据的ids,object_ids为一个list
object_ids = res.inserted_ids
print(object_ids)
查询单条数据
# 查询单条数据,res为一个dict
res = student.find_one({"name":"老王"})
查询满足条件的所有数据
# 查询满足条件的所有数据,res为一个pymongo.cursor.Cursor对象
res = student.find({"name":"老王"})
# 获取数据个数
print(res.count())
for index in res:
# index为一个dict。注意:这个循环只能进行一次,如需再次操作返回结果,需要在find一次,或将list(res),将这个返回结果保存起来
print(index)
更新
# 查询并更新。{"name":"老王"}为查询条件;{"$set":{"addr":"家住隔壁"}}更新数据;upsert=False找不到不插入数据,upsert=True找不到则插入数据
# res为返回结果,res为一个字典对象,是之前数据的字典
res = student.find_one_and_update({"name":"老王"},{"$set":{"addr":"家住隔壁"}},upsert=False)
删除单条数据
student.delete_one({"name":"老王"})
删除匹配条件的所有数据
student.delete_many({"name":"老王"})
附:更多MongoDB的操作
MongoDB 是一个基于分布式文件存储的数据库。由C++语言编写。旨在为WEB应用提供可扩展的高性能数据存储解决方案。
MongoDB 是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当 * 能最丰富,最像关系数据库的。他支持的数据结构非常松散,是类似json的bson格式,因此可以存储比较复杂的数据类型。Mongo最大的特点是他支持的查询语言非常强大,其语法有点类似于面向对象的查询语言,几乎可以实现类似关系数据库单表查询的绝大部分功能。接下来记录一下在终端怎么使用MongoDB:
常用命令
切换/创建数据库
use xxx; # 切换数据库,不存在则创建
插入数据
# 插入数据,name="Python",age=100,Student为集合(表)名,Student不存在会自动创建
db.Student.insert({name:"Python",age:100})
或者定义一个字典
document = {name:"Python",age:100}
db.Student.insert(document)
查询数据
# 查询所有数据
db.Student.find()
# 查询所有数据并格式化输出
db.Student.find().pretty()
# 条件查询,name="python"的所有数据
db.Student.find({name:"python"})
# 条件查询,age > 50的所有数据
db.Student.find({age:{$gt:50}})
# 条件查询,age >= 50的所有数据
db.Student.find({age:{$gte:50}})
# 条件查询,age < 50的所有数据
db.Student.find({age:{$lt:50}})
# 条件查询,age <= 50的所有数据
db.Student.find({age:{$lte:50}})
# 条件查询,age == 50的所有数据
db.Student.find({age:{$eq:50}})
# 条件查询,age != 50的所有数据
db.Student.find({age:{$ne:50}})
# 条件查询,存在name字段的所有数据
db.Student.find({name:{$exists:true}})
# 多条件查询,name="python"并且age=50的所有数据
db.Student.find({name:"python",age:50})
# $and语法,name="python"并且age=50的所有数据。
db.Student.find({$and:[{name:"python"},{age:50}]})
# 查询字典数组的数据infoList = [{"province":"广东","city":"深圳"}]
db.Student.find({"infoList.province":"广东"})
# 查询数量
db.Student.find({name:"python"}).count()
# 或查询,$or语法。查询name="python"或name="android"的所有数据
db.Student.find({$or:[{name:"python"},{name:"android"}]})
# $size语法,查询info数组长度为8的所有数据
db.Student.find({info:{$size:8}})
# $not语法,查询info数组长度不为8的所有数据
db.Student.find({info:{$not:{$size:8}}})
# and与or联合使用.相当于 where age=18 and (name="python" or name="android")
db.Student.find({age:18,$or:[{name:"python"},{name:"android"}]})
# $nor语法,搜索name既不等于"python"且不等于"android"的所有数据
db.Student.find({"$nor":[{name:"python"},{name:"android"}]})
# $in语法.搜索name="老张"或name="老王"的所有数据
db.Student.find({name:{$in:["老王","老张"]}})
# $nin语法.搜索name不为"老张"或"老王"的所有数据
db.Student.find({name:{$nin:["老王","老张"]}})
# $all语法,搜索info=["aaa","bbb"]的所有数据
db.Student.find({info:{$all:["aaa","bbb"]}})
# $mod语法,搜索sex % 2 == 0的所有数据
db.Student.find({sex:{$mod:[2,0]}})
# $where语法,搜索age=info的所有数据
db.Student.find({"$where":"this.age==this.info"})
# $slice语法,过滤,info数组中的后3个数据
db.Student.find({},{info:{$slice:-3}})
# $slice语法,过滤,info数组中的前3个数据
db.Student.find({},{info:{$slice:3}})
# $slice语法,过滤,info数组中跳过20个数据之后取10个数据
db.Student.find({},{info:{$slice:[20,10]}})
# $slice语法,过滤,info数组中倒数第20个数据之后取10个数据
db.Student.find({},{info:{$slice:[-20,10]}})
# 正则.获取name包含"王"的所有数据
db.Student.find({name:{$regex:"王"}})
# 正则。获取name包含"a"并且不区分大小写的所有数据
db.Student.find({name:{$regex:"a",$options:"i"}})
更新数据
# 找到name="MongoDB"的数据,将其更改为name="MongoDB学习",只修改匹配到的第一条数据
db.Student.update({name:"MongoDB"},{$set:{name:"MongoDB学习"}})
# 找不到name="MongoDB"的数据,则插入name="MongoDB学习",找到了则为修改。upsert:true找不到则插入,默认false,不插入
db.Student.update({name:"MongoDB"},{$set:{name:"MongoDB学习"}},{upsert:true})
# 找到name="MongoDB"的数据,将其更改为name="MongoDB学习"。multi:true更改所有匹配的数据,默认false,只匹配第一条
db.Student.update({name:"MongoDB"},{$set:{name:"MongoDB学习"}},{multi:true})
# 匹配name="MongoDB"的第一条数据,将其更改为name="MongoDB学习"
db.Student.updateOne({name:"MongoDB"},{$set:{name:"MongoDB学习"}})
# 更新字典数组的数据infoList = [{"province":"广东","city":"深圳"}]
db.Student.update({"infoList.province":"广东"},{"$set":{"province.$.city":"广州"}})
# 将age>18的数据,修改name="xxx",第一个false:不存在不会插入(true为不存在则插入),第二个false:只匹配第一条数据(true为匹配所有数据)
db.Student.update({age:{$gt:18}},{$set:{name:"xxx"}},false,false)
# 在name="python"的所有数据里,将age字段值+1
db.Student.update({name:"python"},{$inc:{age:1}})
# 在name="python"的所有数据里,将age键删除,1可以是任何值
db.Student.update({name:"python"},{$unset:{age:1}})
# 在name="python"的所有数据里,将age键名修改成"Age"
db.Student.update({name:"python"},{$rename:{age:"Age"}})
# 在name="python"的所有数据里,在名为array的数组添加abc元素
db.Student.update({name:"python"},{$push:{array:"abc"}})
# 在name="python"的所有数据里,将["abc","adc"]里所有元素添加到array里面
db.Student.update({name:"python"},{$pushAll:{array:["abc","adc"]}})
# 在name="python"的所有数据里,在名为array的数组删除abc元素
db.Student.update({name:"python"},{$pull:{array:"abc"}})
# 在name="python"的所有数据里,将["abc","adc"]里所有元素全部从array里删除
db.Student.update({name:"python"},{$pullAll:{array:["abc","adc"]}})
# 在name="python"的所有数据里,删除array数组尾部数据,无论array为多少都只删除一条,array小于0时,删除头部第一条,array大于等于0时,删除尾部第一条
db.Student.update({name:"python"},{$pop:{array:2}})
删除数据
# 删除匹配到的所有数据
db.Student.remove({name:"老张"})
# 删除匹配到第一条数据,justOne:true只删除一条数据
db.Student.remove({name:"老张"},{justOne:true})
**type**:type**:type操作符是基于BSON类型来检索集合中匹配的数据类型,并返回结果
常用type类型:
数字 | 类型 |
---|---|
1 | Double |
2 | String |
3 | Object |
4 | Array |
5 | Binary data |
6 | Undefined |
7 | Object id |
8 | Boolean |
9 | Date |
10 | Null |
11 | Regular Expression |
13 | JavaScript |
14 | Symbol |
15 | JavaScript (with scope) |
16 | 32-bit integer |
17 | Timestamp |
18 | 64-bit integer |
255 | Min key |
127 | Max key |
# 查询name为String类型的所有数据,2为String
db.Student.find({name:{$type:2}})
limit:限制条数
# 查询name="python"的所有数据,限制2条
db.Student.find({name:"python"}).limit(2)
skip:跳过数据
# 查询name > 15的数据,跳过前两条,并限制只查询两条
db.Student.find({name:{$gt:15}}).limit(2).skip(2)
sort:排序,1位升序,-1位降序
# 查询所有数据,并以age升序排列
db.Student.find().sort({age:1})
# 多条件排序
db.Student.find().sort({age:1,score:-1})
findAndModify:查找并更新
# 查找name="python"的所有数据,并修改age=18
db.Student.findAndModify({query:{name:"python"},update:{$set:{age:18}}})
ObjectId
# 获取文档的创建时间
ObjectId("598542475e6b2464187abef7").getTimestamp()
aggregate:聚合查询
常用聚合表达式:
表达式 | 描述 |
---|---|
$sum | 和 |
$avg | 平均值 |
$min | 最小值 |
$max | 最大值 |
$push | 在结果中插入值到数组中 |
$addToSet | 在结果中插入值到数组中,但不创建副本 |
$first | 根据资源文档的排序,获取第一个数据 |
$last | 根据资源文档的排序,获取最后一个数据 |
# 根据name分组,并插入sum,sum值为该组所有age的和
db.Student.aggregate([{$group:{_id:"$name",sum:{$sum:"$age"}}}])
# 根据name分组,并插入sum,sum值为该组的数量,并以sum排序,升序
db.Student.aggregate([{$group:{_id:"$name",sum:{$sum:1}}}])
# 根据name分组,并插入avg,avg值为该组所有age的平均值
db.Student.aggregate([{$group:{_id:"$name",avg:{$avg:"$age"}}}])
# 根据name分组,并插入min,min值为该组所有age的最小值
db.Student.aggregate([{$group:{_id:"$name",min:{$min:"$age"}}}])
# 根据name分组,并插入max,max值为该组所有age的最大值
db.Student.aggregate([{$group:{_id:"$name",max:{$max:"$age"}}}])
# 根据name分组,并插入数组array,array值为该组所有的age值
db.Student.aggregate([{$group:{_id:"$name",array:{$push:"$age"}}}])
# 根据name分组,并插入数组array,array值为该组所有的age值
db.Student.aggregate([{$group:{_id:"$name",array:{$addToSet:"$age"}}}])
# 根据name分组,并插入f,f值为该组age下的第一个值
db.Student.aggregate([{$group:{_id:"$name",f:{$first:"$age"}}}])
# 根据name分组,并插入l,l值为该组age下的第一个值
db.Student.aggregate([{$group:{_id:"$name",l:{$last:"$age"}}}])
管道操作实例
1. $project:用于修改文档的输出结构
# 查询所有的name,age数据,默认包含_id数据。让不包含_id,可以使_id:0
db.Student.aggregate({$project:{name:1,age:1}})
此时输出的内容只有_id,name,age,_id是默认会输出的,想不输出_id,可以使_id:0
2. $match:用于过滤数据
db.Student.aggregate([{$match:{age:{$gt:19,$lte:23}}},{$group:{_id:null,count:{$sum:1}}}])
match过滤出age大于19且小于等于23的数据,然后将符合条件的记录送到下一阶段match过滤出age大于19且小于等于23的数据,然后将符合条件的记录送到下一阶段group管道操作符进行处理
3. $skip:将前5个过滤掉
db.Student.aggregate({$skip:5})
$skip将前面5个数据过滤掉
希望本文所述对大家Python程序设计有所帮助。
来源:https://blog.csdn.net/y472360651/article/details/75911830


猜你喜欢
- 如果不清楚字符串的编码格式的话,就可以将这段字符这样检查:$encode = mb_detect_encoding($string, arr
- 关于文件名:必须以如下方式命名,不要乱起名,也无需专门手动控制加载哪个文件.env 全局默认配置文件,不论什么环境都会加载合并.env.de
- DB2 存储过程:基础知识您在客户端工作站上对远程服务器和位于该服务器上的数据库进行分类的任何时候,都存在一个简单的 DB2 客户端/服务器
- 最近工作中需要写SQLserver的存储过程,第一次使用,简单记录下,以防遗忘。在SQLserver可视化工具中编写,我的工具如下图:首先点
- 目录一、数据库引擎1.1 查看数据库引擎1.2 修改默认数据库引擎二、数据库字符集2.1 查看字符集2.2 修改字符集一、数据库引擎1.1
- 前言Martin(Bob大叔)曾在《代码整洁之道》一书打趣地说:当你的代码在做 Code Review 时,审查者要是愤怒地吼道:“What
- 假设访问的views.py如下1.使用url配置默认页from django.conf.urls import urlfrom django
- Python实现文件的全备份和差异备份之前有写利用md5方式来做差异备份,但是这种md5方式来写存在以下问题:md5sum获取有些软连接的M
- 今天在运行登录远程桌面的时候发现了这个提示关于 “ MySQL Installer is running in Community mode
- 这是一个很久以前的例子,现在在整理资料时无意发现,就拿出来再改写分享。1.需求 1.1 基本需求: 根据输入的地址关键字,搜索出完
- python下读取公私钥做加解密实例详解在RSA有一种应用模式是公钥加密,私钥解密(另一种是私钥签名,公钥验签)。下面是Python下的应用
- • 柯理化函数思想:一个js预先处理的思想;利用函数执行可以形成一个不销毁的作用域的原理,把需要预先处理的内容都储存在这个不销毁的作用域中,
- 用Python编写关于计算图形面积的代码实现,供大家参考,具体内容如下#寒假打卡28天第7天import mathclass Round()
- 就javascript来说,iframe创建的框架和frameset创建的框架一样。这里有个关系图,做个笔记。图片源自《javascript
- 环境:python3, 要安 * s4这个第三方库获取请求头的方法这里使用的是Chrome浏览器。打开你想查询的网站,按F12,或者鼠标右键一
- 最近开发小程序,需要做一个导航,导航可以通过template写出来,但是这个项目需要在导航中处理一些逻辑,做成组件更方便些。首先新建head
- 表一、运算符与特殊字符 运算符描述/选择子元素,返回左侧元素的直接子元素;如果"/"位于最左侧表示选择根结点的直接子元素
- 在进制学习时候,细心的小伙伴不免都发现unicher函数的存在,没错能够经常看到的,也就是关于进制的转化,那肯定有小伙伴要开心起来了,因为进
- python爬虫基本告一段落,琢磨搞点其他的,正好在网上看到一个帖子,一个外国13岁小朋友用python写的下棋程序,内容详细,也有意思,拿
- 最近Google Code推出了一个面向网站开发者的 * Google DocType。它来自于网站开发者同时又面