python+opencv实现目标跟踪过程
作者:冯子玉 发布时间:2023-03-29 01:29:15
标签:python,opencv,目标跟踪
python opencv实现目标跟踪
python-opencv3.0新增了一些比较有用的 * 算法
这里根据官网示例写了一个 * 类
程序只能运行在安装有opencv3.0以上版本和对应的contrib模块的python解释器
#encoding=utf-8
import cv2
from items import MessageItem
import time
import numpy as np
'''
监视者模块,负责入侵检测,目标跟踪
'''
class WatchDog(object):
#入侵检测者模块,用于入侵检测
def __init__(self,frame=None):
#运动检测器构造函数
self._background = None
if frame is not None:
self._background = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
self.es = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (10, 10))
def isWorking(self):
#运动检测器是否工作
return self._background is not None
def startWorking(self,frame):
#运动检测器开始工作
if frame is not None:
self._background = cv2.GaussianBlur(cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY), (21, 21), 0)
def stopWorking(self):
#运动检测器结束工作
self._background = None
def analyze(self,frame):
#运动检测
if frame is None or self._background is None:
return
sample_frame = cv2.GaussianBlur(cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY),(21,21),0)
diff = cv2.absdiff(self._background,sample_frame)
diff = cv2.threshold(diff, 25, 255, cv2.THRESH_BINARY)[1]
diff = cv2.dilate(diff, self.es, iterations=2)
image, cnts, hierarchy = cv2.findContours(diff.copy(),cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
coordinate = []
bigC = None
bigMulti = 0
for c in cnts:
if cv2.contourArea(c) < 1500:
continue
(x,y,w,h) = cv2.boundingRect(c)
if w * h > bigMulti:
bigMulti = w * h
bigC = ((x,y),(x+w,y+h))
if bigC:
cv2.rectangle(frame, bigC[0],bigC[1], (255,0,0), 2, 1)
coordinate.append(bigC)
message = {"coord":coordinate}
message['msg'] = None
return MessageItem(frame,message)
class Tracker(object):
'''
追踪者模块,用于追踪指定目标
'''
def __init__(self,tracker_type = "BOOSTING",draw_coord = True):
'''
初始化 * 种类
'''
#获得opencv版本
(major_ver, minor_ver, subminor_ver) = (cv2.__version__).split('.')
self.tracker_types = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
self.tracker_type = tracker_type
self.isWorking = False
self.draw_coord = draw_coord
#构造 *
if int(minor_ver) < 3:
self.tracker = cv2.Tracker_create(tracker_type)
else:
if tracker_type == 'BOOSTING':
self.tracker = cv2.TrackerBoosting_create()
if tracker_type == 'MIL':
self.tracker = cv2.TrackerMIL_create()
if tracker_type == 'KCF':
self.tracker = cv2.TrackerKCF_create()
if tracker_type == 'TLD':
self.tracker = cv2.TrackerTLD_create()
if tracker_type == 'MEDIANFLOW':
self.tracker = cv2.TrackerMedianFlow_create()
if tracker_type == 'GOTURN':
self.tracker = cv2.TrackerGOTURN_create()
def initWorking(self,frame,box):
'''
* 工作初始化
frame:初始化追踪画面
box:追踪的区域
'''
if not self.tracker:
raise Exception(" * 未初始化")
status = self.tracker.init(frame,box)
if not status:
raise Exception(" * 工作初始化失败")
self.coord = box
self.isWorking = True
def track(self,frame):
'''
开启追踪
'''
message = None
if self.isWorking:
status,self.coord = self.tracker.update(frame)
if status:
message = {"coord":[((int(self.coord[0]), int(self.coord[1])),(int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3])))]}
if self.draw_coord:
p1 = (int(self.coord[0]), int(self.coord[1]))
p2 = (int(self.coord[0] + self.coord[2]), int(self.coord[1] + self.coord[3]))
cv2.rectangle(frame, p1, p2, (255,0,0), 2, 1)
message['msg'] = "is tracking"
return MessageItem(frame,message)
class ObjectTracker(object):
def __init__(self,dataSet):
self.cascade = cv2.CascadeClassifier(dataSet)
def track(self,frame):
gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)
faces = self.cascade.detectMultiScale(gray,1.03,5)
for (x,y,w,h) in faces:
cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2)
return frame
if __name__ == '__main__' :
a = ['BOOSTING', 'MIL','KCF', 'TLD', 'MEDIANFLOW', 'GOTURN']
tracker = Tracker(tracker_type="KCF")
video = cv2.VideoCapture(0)
ok, frame = video.read()
bbox = cv2.selectROI(frame, False)
tracker.initWorking(frame,bbox)
while True:
_,frame = video.read();
if(_):
item = tracker.track(frame);
cv2.imshow("track",item.getFrame())
k = cv2.waitKey(1) & 0xff
if k == 27:
break
#encoding=utf-8
import json
from utils import IOUtil
'''
信息封装类
'''
class MessageItem(object):
#用于封装信息的类,包含图片和其他信息
def __init__(self,frame,message):
self._frame = frame
self._message = message
def getFrame(self):
#图片信息
return self._frame
def getMessage(self):
#文字信息,json格式
return self._message
def getBase64Frame(self):
#返回base64格式的图片,将BGR图像转化为RGB图像
jepg = IOUtil.array_to_bytes(self._frame[...,::-1])
return IOUtil.bytes_to_base64(jepg)
def getBase64FrameByte(self):
#返回base64格式图片的bytes
return bytes(self.getBase64Frame())
def getJson(self):
#获得json数据格式
dicdata = {"frame":self.getBase64Frame().decode(),"message":self.getMessage()}
return json.dumps(dicdata)
def getBinaryFrame(self):
return IOUtil.array_to_bytes(self._frame[...,::-1])
运行之后在第一帧图像上选择要追踪的部分,这里测试了一下使用KCF算法的 *
更新:忘记放utils,给大家造成的困扰深表歉意
#encoding=utf-8
import time
import numpy
import base64
import os
import logging
import sys
from settings import *
from PIL import Image
from io import BytesIO
#工具类
class IOUtil(object):
#流操作工具类
@staticmethod
def array_to_bytes(pic,formatter="jpeg",quality=70):
'''
静态方法,将numpy数组转化二进制流
:param pic: numpy数组
:param format: 图片格式
:param quality:压缩比,压缩比越高,产生的二进制数据越短
:return:
'''
stream = BytesIO()
picture = Image.fromarray(pic)
picture.save(stream,format=formatter,quality=quality)
jepg = stream.getvalue()
stream.close()
return jepg
@staticmethod
def bytes_to_base64(byte):
'''
静态方法,bytes转base64编码
:param byte:
:return:
'''
return base64.b64encode(byte)
@staticmethod
def transport_rgb(frame):
'''
将bgr图像转化为rgb图像,或者将rgb图像转化为bgr图像
'''
return frame[...,::-1]
@staticmethod
def byte_to_package(bytes,cmd,var=1):
'''
将每一帧的图片流的二进制数据进行分包
:param byte: 二进制文件
:param cmd:命令
:return:
'''
head = [ver,len(byte),cmd]
headPack = struct.pack("!3I", *head)
senddata = headPack+byte
return senddata
@staticmethod
def mkdir(filePath):
'''
创建文件夹
'''
if not os.path.exists(filePath):
os.mkdir(filePath)
@staticmethod
def countCenter(box):
'''
计算一个矩形的中心
'''
return (int(abs(box[0][0] - box[1][0])*0.5) + box[0][0],int(abs(box[0][1] - box[1][1])*0.5) +box[0][1])
@staticmethod
def countBox(center):
'''
根据两个点计算出,x,y,c,r
'''
return (center[0][0],center[0][1],center[1][0]-center[0][0],center[1][1]-center[0][1])
@staticmethod
def getImageFileName():
return time.strftime("%Y_%m_%d_%H_%M_%S", time.localtime())+'.png'
#构造日志
logger = logging.getLogger(LOG_NAME)
formatter = logging.Formatter(LOG_FORMATTER)
IOUtil.mkdir(LOG_DIR);
file_handler = logging.FileHandler(LOG_DIR + LOG_FILE,encoding='utf-8')
file_handler.setFormatter(formatter)
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(formatter)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
logger.setLevel(logging.INFO)
来源:https://blog.csdn.net/qq_35488769/article/details/79103264


猜你喜欢
- Ajax 技术改变了大型商业 Web 应用程序的外观,但是许多较小的 Web 站点都不具备足够的资源重新构建完整的用户界面(UI)。Ajax
- 该方法编辑于2021年2月7日,自己使用的版本是8.0.23,事情的起因要从袁隆平教授说起…要从一本教科书说起,有一章节是“MySQL安全管
- 程序设计中三种基本机构是顺序结构、选择结构和循环结构。顺序结构语句是程序中最基础的语句,赋值语句、输入/输出语句、模块导入语句等都是顺序结构
- 传统Python语言的主要控制结构是for循环。然而,需要注意的是for循环在Pandas中不常用,因此Python中for循环的有效执行并
- 目录 一,抓取情况描述二,网页分析三,程序编写 一,抓取情况描述1.抓取的页面需要登陆,以公司网页为例,登陆网址http
- 目录一、Python 中的作用域规则和嵌套函数二、定义闭包函数三、何时使用闭包?四、总结一、Python 中的作用域规则和嵌套函数每当执行一
- 代码如下:--相信大家肯定经常会把数据导入到数据库中,但是可能会有些记录行的所有列的数据是null,这为null的数据是我们不需要 --现在
- 一、两种模式pytorch可以给我们提供两种方式来切换训练和评估(推断)的模式,分别是:model.train() 和 model.eval
- 本文实例讲述了Python爬虫DNS解析缓存方法。分享给大家供大家参考,具体如下:前言:这是Python爬虫中DNS解析缓存模块中的核心代码
- 在使用python对网页进行多次快速爬取的时候,访问次数过于频繁,服务器不会考虑User-Agent的信息,会直接把你视为爬虫,从而过滤掉,
- 直观感受几种常用排序算法,具体内容如下1 快速排序介绍:快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要Ο(n
- 1、同级目录下调用若在程序 testone.py 中导入模块 testtwo.py , 则直接使用【import testtwo 或 fro
- 前言在实际业务场景我们可能需要开放单独用户给第三方使用,并且不想让第三方看到与业务不相关的表或视图,我们需要在数据库中设置一切权限来实现此功
- 本文实例为大家分享了vue实现触底查询功能的具体代码,供大家参考,具体内容如下1.使用vant-list组件相关内容如下:2.对象绑定值的默
- 文章略长,但比较简单。es6中的数组方法some()和every()都接收一个回调函数作为参数,该回调函数又接收三个参数,分别是数组元素、数
- 之前mysql用着好着,可是今天在启动mysql后输入密码出现了闪退,在任务管理器中发现mysql服务没有启动,当手动启动时提示拒绝访问。在
- 我们给大家详细分析了一下在JS调试的时候经常用到的断点调试,并把经验和技巧做了总结,以下是全部内容:1.断点调试是啥?难不难?断点调试其实并
- tf.diag(diagonal,name=None) #生成对角矩阵import tensorflowas tf;diagonal=[1,
- 本文实例为大家分享了Bootstrap实现渐变顶部固定自适应导航栏的具体代码,供大家参考,具体内容如下具体代码如下所示:<!DOCTY
- 本文为大家分享了Python文本特征抽取与向量化的具体代码,供大家参考,具体内容如下假设我们刚看完诺兰的大片《星际穿越》,设想如何让机器来自