网络编程
位置:首页>> 网络编程>> 网络编程>> 如何将yolov5中的PANet层改为BiFPN详析

如何将yolov5中的PANet层改为BiFPN详析

作者:m0_56247038  发布时间:2023-08-12 18:08:38 

标签:yolov5,panet层,bifpn

本文以YOLOv5-6.1版本为例

一、Add

1.在common.py后加入如下代码

# 结合BiFPN 设置可学习参数 学习不同分支的权重
# 两个分支add操作
class BiFPN_Add2(nn.Module):
   def __init__(self, c1, c2):
       super(BiFPN_Add2, self).__init__()
       # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter
       # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter
       # 从而在参数优化的时候可以自动一起优化
       self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
       self.epsilon = 0.0001
       self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
       self.silu = nn.SiLU()

def forward(self, x):
       w = self.w
       weight = w / (torch.sum(w, dim=0) + self.epsilon)
       return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))

# 三个分支add操作
class BiFPN_Add3(nn.Module):
   def __init__(self, c1, c2):
       super(BiFPN_Add3, self).__init__()
       self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
       self.epsilon = 0.0001
       self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
       self.silu = nn.SiLU()

def forward(self, x):
       w = self.w
       weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
       # Fast normalized fusion
       return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))

2.yolov5s.yaml进行修改

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
 - [10,13, 16,30, 33,23]  # P3/8
 - [30,61, 62,45, 59,119]  # P4/16
 - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
 # [from, number, module, args]
 [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
  [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
  [-1, 3, C3, [128]],
  [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
  [-1, 6, C3, [256]],
  [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
  [-1, 9, C3, [512]],
  [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
  [-1, 3, C3, [1024]],
  [-1, 1, SPPF, [1024, 5]],  # 9
 ]

# YOLOv5 v6.0 BiFPN head
head:
 [[-1, 1, Conv, [512, 1, 1]],
  [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  [[-1, 6], 1, BiFPN_Add2, [256, 256]],  # cat backbone P4
  [-1, 3, C3, [512, False]],  # 13

[-1, 1, Conv, [256, 1, 1]],
  [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  [[-1, 4], 1, BiFPN_Add2, [128, 128]],  # cat backbone P3
  [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

[-1, 1, Conv, [512, 3, 2]],  # 为了BiFPN正确add,调整channel数
  [[-1, 13, 6], 1, BiFPN_Add3, [256, 256]],  # cat P4 <--- BiFPN change 注意v5s通道数是默认参数的一半
  [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
  [[-1, 10], 1, BiFPN_Add2, [256, 256]],  # cat head P5
  [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
 ]

3.修改yolo.py,在parse_model函数中找到elif m is Concat:语句,在其后面加上BiFPN_Add相关语句:

如何将yolov5中的PANet层改为BiFPN详析

# 添加bifpn_add结构
elif m in [BiFPN_Add2, BiFPN_Add3]:
   c2 = max([ch[x] for x in f])

4.修改train.py,向优化器中添加BiFPN的权重参数

BiFPN_Add2BiFPN_Add3函数中定义的w参数,加入g1

如何将yolov5中的PANet层改为BiFPN详析

# BiFPN_Concat
       elif isinstance(v, BiFPN_Add2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
           g1.append(v.w)
       elif isinstance(v, BiFPN_Add3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
           g1.append(v.w)

然后导入一下这两个包

如何将yolov5中的PANet层改为BiFPN详析

二、Concat

1.在common.py后加入如下代码

# 结合BiFPN 设置可学习参数 学习不同分支的权重
# 两个分支concat操作
class BiFPN_Concat2(nn.Module):
   def __init__(self, dimension=1):
       super(BiFPN_Concat2, self).__init__()
       self.d = dimension
       self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
       self.epsilon = 0.0001

def forward(self, x):
       w = self.w
       weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
       # Fast normalized fusion
       x = [weight[0] * x[0], weight[1] * x[1]]
       return torch.cat(x, self.d)

# 三个分支concat操作
class BiFPN_Concat3(nn.Module):
   def __init__(self, dimension=1):
       super(BiFPN_Concat3, self).__init__()
       self.d = dimension
       # 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter
       # 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter
       # 从而在参数优化的时候可以自动一起优化
       self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
       self.epsilon = 0.0001

def forward(self, x):
       w = self.w
       weight = w / (torch.sum(w, dim=0) + self.epsilon)  # 将权重进行归一化
       # Fast normalized fusion
       x = [weight[0] * x[0], weight[1] * x[1], weight[2] * x[2]]
       return torch.cat(x, self.d)

2.yolov5s.yaml进行修改 

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple
anchors:
 - [10,13, 16,30, 33,23]  # P3/8
 - [30,61, 62,45, 59,119]  # P4/16
 - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
 # [from, number, module, args]
 [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
  [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
  [-1, 3, C3, [128]],
  [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
  [-1, 6, C3, [256]],
  [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
  [-1, 9, C3, [512]],
  [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
  [-1, 3, C3, [1024]],
  [-1, 1, SPPF, [1024, 5]],  # 9
 ]

# YOLOv5 v6.0 BiFPN head
head:
 [[-1, 1, Conv, [512, 1, 1]],
  [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  [[-1, 6], 1, BiFPN_Concat2, [1]],  # cat backbone P4 <--- BiFPN change
  [-1, 3, C3, [512, False]],  # 13

[-1, 1, Conv, [256, 1, 1]],
  [-1, 1, nn.Upsample, [None, 2, 'nearest']],
  [[-1, 4], 1, BiFPN_Concat2, [1]],  # cat backbone P3 <--- BiFPN change
  [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

[-1, 1, Conv, [256, 3, 2]],
  [[-1, 14, 6], 1, BiFPN_Concat3, [1]],  # cat P4 <--- BiFPN change
  [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

[-1, 1, Conv, [512, 3, 2]],
  [[-1, 10], 1, BiFPN_Concat2, [1]],  # cat head P5 <--- BiFPN change
  [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

[[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
 ]

3.修改yolo.py,在parse_model函数中找到elif m is Concat:语句,在其后面加上BiFPN_Concat相关语句: 

如何将yolov5中的PANet层改为BiFPN详析

# 添加bifpn_concat结构
elif m in [Concat, BiFPN_Concat2, BiFPN_Concat3]:
   c2 = sum(ch[x] for x in f)

4.修改train.py,向优化器中添加BiFPN的权重参数

添加复方式同上(Add)

# BiFPN_Concat
       elif isinstance(v, BiFPN_Concat2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
           g1.append(v.w)
       elif isinstance(v, BiFPN_Concat3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
           g1.append(v.w)

至此,大功告成~~~

reference:

【YOLOv5-6.x】设置可学习权重结合BiFPN(Add操作)

【YOLOv5-6.x】设置可学习权重结合BiFPN(Concat操作)

来源:https://blog.csdn.net/m0_56247038/article/details/124891449

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com