如何将yolov5中的PANet层改为BiFPN详析
作者:m0_56247038 发布时间:2023-08-12 18:08:38
标签:yolov5,panet层,bifpn
本文以YOLOv5-6.1版本为例
一、Add
1.在common.py后加入如下代码
# 结合BiFPN 设置可学习参数 学习不同分支的权重
# 两个分支add操作
class BiFPN_Add2(nn.Module):
def __init__(self, c1, c2):
super(BiFPN_Add2, self).__init__()
# 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter
# 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter
# 从而在参数优化的时候可以自动一起优化
self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.epsilon = 0.0001
self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
self.silu = nn.SiLU()
def forward(self, x):
w = self.w
weight = w / (torch.sum(w, dim=0) + self.epsilon)
return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1]))
# 三个分支add操作
class BiFPN_Add3(nn.Module):
def __init__(self, c1, c2):
super(BiFPN_Add3, self).__init__()
self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
self.epsilon = 0.0001
self.conv = nn.Conv2d(c1, c2, kernel_size=1, stride=1, padding=0)
self.silu = nn.SiLU()
def forward(self, x):
w = self.w
weight = w / (torch.sum(w, dim=0) + self.epsilon) # 将权重进行归一化
# Fast normalized fusion
return self.conv(self.silu(weight[0] * x[0] + weight[1] * x[1] + weight[2] * x[2]))
2.yolov5s.yaml进行修改
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 BiFPN head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, BiFPN_Add2, [256, 256]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, BiFPN_Add2, [128, 128]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [512, 3, 2]], # 为了BiFPN正确add,调整channel数
[[-1, 13, 6], 1, BiFPN_Add3, [256, 256]], # cat P4 <--- BiFPN change 注意v5s通道数是默认参数的一半
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, BiFPN_Add2, [256, 256]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
3.修改yolo.py,在parse_model
函数中找到elif m is Concat:
语句,在其后面加上BiFPN_Add
相关语句:
# 添加bifpn_add结构
elif m in [BiFPN_Add2, BiFPN_Add3]:
c2 = max([ch[x] for x in f])
4.修改train.py,向优化器中添加BiFPN的权重参数
将BiFPN_Add2
和BiFPN_Add3
函数中定义的w
参数,加入g1
# BiFPN_Concat
elif isinstance(v, BiFPN_Add2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
g1.append(v.w)
elif isinstance(v, BiFPN_Add3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
g1.append(v.w)
然后导入一下这两个包
二、Concat
1.在common.py后加入如下代码
# 结合BiFPN 设置可学习参数 学习不同分支的权重
# 两个分支concat操作
class BiFPN_Concat2(nn.Module):
def __init__(self, dimension=1):
super(BiFPN_Concat2, self).__init__()
self.d = dimension
self.w = nn.Parameter(torch.ones(2, dtype=torch.float32), requires_grad=True)
self.epsilon = 0.0001
def forward(self, x):
w = self.w
weight = w / (torch.sum(w, dim=0) + self.epsilon) # 将权重进行归一化
# Fast normalized fusion
x = [weight[0] * x[0], weight[1] * x[1]]
return torch.cat(x, self.d)
# 三个分支concat操作
class BiFPN_Concat3(nn.Module):
def __init__(self, dimension=1):
super(BiFPN_Concat3, self).__init__()
self.d = dimension
# 设置可学习参数 nn.Parameter的作用是:将一个不可训练的类型Tensor转换成可以训练的类型parameter
# 并且会向宿主模型注册该参数 成为其一部分 即model.parameters()会包含这个parameter
# 从而在参数优化的时候可以自动一起优化
self.w = nn.Parameter(torch.ones(3, dtype=torch.float32), requires_grad=True)
self.epsilon = 0.0001
def forward(self, x):
w = self.w
weight = w / (torch.sum(w, dim=0) + self.epsilon) # 将权重进行归一化
# Fast normalized fusion
x = [weight[0] * x[0], weight[1] * x[1], weight[2] * x[2]]
return torch.cat(x, self.d)
2.yolov5s.yaml进行修改
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Parameters
nc: 80 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 v6.0 backbone
backbone:
# [from, number, module, args]
[[-1, 1, Conv, [64, 6, 2, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 6, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 3, C3, [1024]],
[-1, 1, SPPF, [1024, 5]], # 9
]
# YOLOv5 v6.0 BiFPN head
head:
[[-1, 1, Conv, [512, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 6], 1, BiFPN_Concat2, [1]], # cat backbone P4 <--- BiFPN change
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[[-1, 4], 1, BiFPN_Concat2, [1]], # cat backbone P3 <--- BiFPN change
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14, 6], 1, BiFPN_Concat3, [1]], # cat P4 <--- BiFPN change
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, BiFPN_Concat2, [1]], # cat head P5 <--- BiFPN change
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
3.修改yolo.py,在parse_model
函数中找到elif m is Concat:
语句,在其后面加上BiFPN_
Concat相关语句:
# 添加bifpn_concat结构
elif m in [Concat, BiFPN_Concat2, BiFPN_Concat3]:
c2 = sum(ch[x] for x in f)
4.修改train.py,向优化器中添加BiFPN的权重参数
添加复方式同上(Add)
# BiFPN_Concat
elif isinstance(v, BiFPN_Concat2) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
g1.append(v.w)
elif isinstance(v, BiFPN_Concat3) and hasattr(v, 'w') and isinstance(v.w, nn.Parameter):
g1.append(v.w)
至此,大功告成~~~
reference:
【YOLOv5-6.x】设置可学习权重结合BiFPN(Add操作)
【YOLOv5-6.x】设置可学习权重结合BiFPN(Concat操作)
来源:https://blog.csdn.net/m0_56247038/article/details/124891449
0
投稿
猜你喜欢
- 二进制包方式安装一、首先检查服务器上是否安装有mysql:第一步:查看mysql安装版本rpm -qa|grep -i mysql第二步:卸
- 前言PyTorch作为一款深度学习框架,已经帮助我们实现了很多很多的功能了,包括数据的读取和转换了,那么这一章节就介绍一下PyTorch内置
- 应用场景:使用pandas把多个相同结构的Excel文件合并为一个。原始数据: 相关代码:import osimport pand
- tensorflow中tf.concat的axis的使用我一直理解的比较模糊,这次做个笔记理下自己的思路。import tensorflow
- 一、背景 今天闲着无事,写了一个小小的Python脚本程序,然后给同学炫耀的时候,发现每次都得拉着其他人过来看着自己的电脑屏幕,感觉不是很爽
- 前言: 在各类技术岗位面试中,似乎 MySQL 相关问题经常被问到。无论你面试开发岗位或运维岗位,总会问几道数据库问题。经常有小伙
- 字符串就是一个话题中心。给字符串编号在很多很多情况下,我们都要对字符串中的每个字符进行操作(具体看后面的内容),要准确进行操作,必须做的一个
- 但是Class这个东西,如果用得比较少,充其量只是一个大模块的包装方式. 只有大规模地用它来开发,才能显出它对项目管理的优越性来. 所谓的意
- 最近基于selenium写了一个python小工具,记录下学习记录,自己运行的环境是Ubuntu 14.04.4, Python 2.7,C
- 1、开头:#!/usr/bin/python和# -*- coding: utf-8 -*-的作用 – 指定#!/usr/bin/pytho
- 网站流量上来后,日志按天甚至小时存储更方便查看和管理,而Python的logging模块也提供了TimedRotatingFileHandl
- 本教程为大家分享了Fly Bird小游戏的制作流程,供大家参考,具体内容如下1.分析页面结构,理清需求和功能游戏有三个界面,分别是开始界面,
- 程序需要多进程见共享内存,使用了Manager的dict。最初代码如下:from multiprocessing import Proces
- settings文件中配置:LOGGING = { 'version':1, 'disabl
- 网页兼容测试,除了做不同浏览器的兼容测试,还要观察网页在不同分辨率下的表现情况。在页面中使用了CSS绝对定位,发现在宽屏下错位。随后测试非1
- SocketServer创建一个网络服务框架。它定义了类来处理TCP,UDP, UNIX streams 和UNIX datagrams上的
- 语言是信息传播的主要障碍。多语言网站,顾名思义就是能够以多种语言(而不是单种语言)为用户提供信息服务,让使用不同语言的用户都能够从同个网站获
- 下面的代码主要用于使用python语言调用NASA官方的MODIS处理工具HEG进行投影坐标转换与重采样批量处理主要参考HEG的用户手册:h
- <div> <table width="320" cellpadding="0"
- ''' 爬取豆瓣电影排行榜 设计思路: &nb