分享介绍Python的9个实用技巧
作者:Python学习与数据挖掘 发布时间:2023-12-18 22:22:28
本文会介绍一些Python大神用的贼溜的技巧,让一探究竟吧!欢迎收藏学习,喜欢点赞支持,欢迎畅聊。
整理字符串输入
整理用户输入的问题在编程过程中很常见。有更好的方法来解决:
user_input = "This
string has some whitespaces...
"
character_map = {
ord(
) : ,
ord( ) : ,
ord(
) : None
}
user_input.translate(character_map) # This string has some whitespaces...
在本例中,你可以看到空格符「n」和「t」都被替换掉了几个空格,「r」都被替换掉了。这只是个很简单的例子,我们可以更进一步,使用「 unicodedata”程序包生成大型重映射表,并使用其中的“combining()”进行生成和映射
迭代器(切片)
如果对返回一个对象进行简单的操作,会提示生成对象下的“TypeError”,但是我们可以用一个对象的方案来解决问题:
import itertools
s = itertools.islice(range(50), 10, 20) # <itertools.islice object at 0x7f70fab88138>
for val in s:
...
我们可以使用「itertools.islice」创建一个「islice」,该对象是一个迭代器,可以产生我们想要的项。但需要注意的是,该操作要使用对象以及对象的所有生成器项,「 islice」对象中的所有项。
跳过可对对象的开头
有时你要处理一些不需要的行(如注释)开头的文件。「itertools」再次提供了一种简单的解决方案:
string_from_file = """
// Author: ...
// License: ...
//
// Date: ...
Actual content...
"""
import itertools
for line in itertools.dropwhile(lambda line: line.startswith("//"), string_from_file.split("
")):
print(line)
这段代码只打印初始注释部分之后的内容。如果我们只想舍弃可迭代对象的开头部分(本示例中为开头的注释行),而又不知道要这部分有多长时,这种方法就很有用了。
只包含关键字参数的函数 (kwargs)
当我们使用下面的函数时,创建仅仅需要关键字参数作为输入的函数来提供更清晰的函数定义,会很有帮助:
def test(*, a, b):
pass
test("value for a", "value for b") # TypeError: test() takes 0 positional arguments...
test(a="value", b="value 2") # Works...
如你所见,在关键字参数之前加上一个「」就可以解决这个问题。如果我们将某些参数放在「」参数之前,它们显然是位置参数。
创建支持「with」语句的对象
举例而言,我们都知道如何使用「with」语句打开文件或获取锁,但是我们可以实现自己上下文表达式吗?是的,我们可以使用「enter」和「exit」来实现上下文管理协议:
class Connection:
def __init__(self):
...
def __enter__(self):
# Initialize connection...
def __exit__(self, type, value, traceback):
# Close connection...
with Connection() as c:
# __enter__() executes
...
# conn.__exit__() executes
这是在 Python 中最常见的实现上下文管理的方法,但是还有更简单的方法:
from contextlib import contextmanager
@contextmanager
def tag(name):
print(f"<{name}>")
yield
print(f"</{name}>")
with tag("h1"):
print("This is Title.")
上面这段代码使用 contextmanager 的 manager 装饰器实现了内容管理协议。在进入 with 块时 tag 函数的第一部分(在 yield 之前的部分)就已经执行了,然后 with 块才被执行,最后执行 tag 函数的其余部分。
用「slots」节省内存
如果你曾经编写过一个创建了某种类的大量实例的程序,那么你可能已经注意到,你的程序突然需要大量的内存。那是因为 Python 使用字典来表示类实例的属性,这使其速度很快,但内存使用效率却不是很高。通常情况下,这并不是一个严重的问题。但是,如果你的程序因此受到严重的影响,不妨试一下「slots」:
class Person:
__slots__ = ["first_name", "last_name", "phone"]
def __init__(self, first_name, last_name, phone):
self.first_name = first_name
self.last_name = last_name
self.phone = phone
当我们定义了「slots」属性时,Python 没有使用字典来表示属性,而是使用小的固定大小的数组,这大大减少了每个实例所需的内存。使用「slots」也有一些缺点:我们不能声明任何新的属性,我们只能使用「slots」上现有的属性。而且,带有「slots」的类不能使用多重继承。
限制「CPU」和内存使用量
如果不是想优化程序对内存或 CPU 的使用率,而是想直接将其限制为某个确定的数字,Python 也有一个对应的库可以做到:
import signal
import resource
import os
# To Limit CPU time
def time_exceeded(signo, frame):
print("CPU exceeded...")
raise SystemExit(1)
def set_max_runtime(seconds):
# Install the signal handler and set a resource limit
soft, hard = resource.getrlimit(resource.RLIMIT_CPU)
resource.setrlimit(resource.RLIMIT_CPU, (seconds, hard))
signal.signal(signal.SIGXCPU, time_exceeded)
# To limit memory usage
def set_max_memory(size):
soft, hard = resource.getrlimit(resource.RLIMIT_AS)
resource.setrlimit(resource.RLIMIT_AS, (size, hard))
我们可以看到,在上面的代码片段中,同时包含设置最大 CPU 运行时间和最大内存使用限制的选项。在限制 CPU 的运行时间时,我们首先获得该特定资源(RLIMIT_CPU)的软限制和硬限制,然后使用通过参数指定的秒数和先前检索到的硬限制来进行设置。最后,如果 CPU 的运行时间超过了限制,我们将发出系统退出的信号。在内存使用方面,我们再次检索软限制和硬限制,并使用带「size」参数的「setrlimit」和先前检索到的硬限制来设置它。
控制可以/不可以导入什么
有些语言有非常明显的机制来导出成员(变量、方法、接口),例如在 Golang 中只有以大写字母开头的成员被导出。然而,在 Python 中,所有成员都会被导出(除非我们使用了「all」):
def foo():
pass
def bar():
pass
__all__ = ["bar"]
在上面这段代码中,我们知道只有「bar」函数被导出了。同样,我们可以让「all」为空,这样就不会导出任何东西,当从这个模块导入的时候,会造成「AttributeError」。
实现比较运算符的简单方法
为一个类实现所有的比较相似(如 lt , le , gt , ge)是很繁琐的。有更简单的方法可以做到这一点吗?这种时候,「functools.total_ordering」就是一个很好的帮手:
from functools import total_ordering
@total_ordering
class Number:
def __init__(self, value):
self.value = value
def __lt__(self, other):
return self.value < other.value
def __eq__(self, other):
return self.value == other.value
print(Number(20) > Number(3))
print(Number(1) < Number(5))
print(Number(15) >= Number(15))
print(Number(10) <= Number(2))
这里的工作原理究竟是怎样的呢?我们用「total_ordering」装饰器简化实现对类实例排序的过程。我们只需要定义「LT」和「当量」就可以了,它们是实现其余操作所需要的最小的集合(这里也表现了装饰器的作用——为我们操作空白)。
来源:https://blog.csdn.net/weixin_38037405/article/details/121284419


猜你喜欢
- 我们知道 Golang 切片(slice) 在容量不足的情况下会进行扩容,扩容的原理是怎样的呢?是不是每次扩一倍?下面我们结合源码来告诉你答
- 什么是事件呢?按下键盘某个按键,鼠标移动,包括点击关闭按钮都可以算是事件操作。Pygame事件pygame.event.EventType&
- 根据导师作业安排,在学习数字图像处理(刚萨雷斯版)第六章 彩色图像处理 中的彩色模型后,导师安排了一个比较有趣的作业:融合原理为:1 注意:
- .xls格式 Office2003及以下版本 .xlsx格式Offi
- #当前文件的路径pwd = os.getcwd()#当前文件的父路径father_path=os.path.abspath(os.path.
- 这时候最好的做法就是按需引入,动态引入组件js和样式,文件load完成后调用callback,运行js。代码还是很简便的 1. 判断文件lo
- 最近需要将csv文件转成DataFrame并以json的形式展示到前台,故需要用到Dataframe的to_json方法to_json方法默
- 1.什么是Hilbert矩阵矩阵下面分别列举了1*1;2*2;3*3大小的矩阵; 通过观察,我们发现其规律性极强,那第三列举个例子
- 这几天写代码中遇到的一个常见问题,在Python中如何批量的生成一些变量,如生成变量X1, X2, X3,并在后续的方法中调用,完成赋值、取
- 本文实例为大家分享了js实现简单图片轮播的具体代码,最终实现效果图代码块<!DOCTYPE html><html>
- 本文实例讲述了python实现下载指定网址所有图片的方法。分享给大家供大家参考。具体实现方法如下:#coding=utf-8#downloa
- 一、背景:nginx 的log 不会自动按天备份,而且记录时间格式不统一,此程序专门解决这两个问题;二、windows 部署方式1.在 ng
- 之前编写Python更多的是使用pycharm作为编译器进行开发,但是个人感觉用起来比较笨重,而且还收费的,需要进行破解才能使用。后来发现v
- scrapy.FormRequestlogin.pyclass LoginSpider(scrapy.Spider): name =
- 目前很多软件都限制单实例,大多数软件都是用Mutex来实现的 而这个东西咱们可以用handle去干掉它,并且不影响使用。 钉钉也是一样的步骤
- 1.python爬虫浏览器伪装#导入urllib.request模块import urllib.request#设置请求头headers=(
- 最近有在使用屏幕录制软件录制桌面,在用的过程中突发奇想,使用python能不能做屏幕录制工具,也锻炼下自己的动手能力。接下准备写使用pyth
- 一.FUNCTION: 在sqlserver2008中有3中自定义函数:标量函数/内联表值函数/多语句表值函数,首先总结下他们语法的异同点:
- 二、导航功能增强 1. 下拉菜单中的链接(Links in Select Menu)Q:我如何实现在下拉菜单中链接到不
- WingIDE的使用好的工具可以让你做事时,事半功倍!这一点在写代码的过程中尤为明显,使用Pyhton写程序有一年多了!各类编辑器IDE也使