openCV中值滤波和均值滤波的代码实现
作者:Kyda 发布时间:2023-07-22 06:08:28
在开始我们今天的博客之前,我们需要先了解一下什么是滤波:
首先我们看一下图像滤波的概念。图像滤波,即在尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。
下图左边是原图右边是噪声图:
消除图像中的噪声成分叫作图像的平滑化或滤波操作。信号或图像的能量大部分集中在幅度谱的低频和中频段是很常见的,而在较高频段,感兴趣的信息经常被噪声淹没。因此一个能降低高频成分幅度的滤波器就能够减弱噪声的影响。
图像滤波的目的有两个:一是抽出对象的特征作为图像识别的特征模式;另一个是为适应图像处理的要求,消除图像数字化时所混入的噪声。
而对滤波处理的要求也有两条:一是不能损坏图像的轮廓及边缘等重要信息;二是使图像清晰视觉效果好。
平滑滤波是低频增强的空间域滤波技术。它的目的有两类:一类是模糊;另一类是消除噪音。
空间域的平滑滤波一般采用简单平均法进行,就是求邻近像元点的平均亮度值。邻域的大小与平滑的效果直接相关,邻域越大平滑的效果越好,但邻域过大,平滑会使边缘信息损失的越大,从而使输出的图像变得模糊,因此需合理选择邻域的大小。
关于滤波器,一种形象的比喻法是:我们可以把滤波器想象成一个包含加权系数的窗口,当使用这个滤波器平滑处理图像时,就把这个窗口放到图像之上,透过这个窗口来看我们得到的图像。
举一个滤波在我们生活中的应用:美颜的磨皮功能。如果将我们脸上坑坑洼洼比作是噪声的话,那么滤波算法就是来取出这些噪声,使我们自拍的皮肤看起来很光滑。
这篇博文会介绍中值滤波以及均值滤波两种算法
一.均值滤波
图片中一个方块区域(一般为3*3)内,中心点的像素为全部点像素值的平均值。均值滤波就是对于整张图片进行以上操作。
我们可以看下图的矩阵进行理解
缺陷:均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声
实现代码:
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include<ctime>
using namespace cv;
using namespace std;
//均值滤波
void AverFiltering(const Mat &src,Mat &dst) {
if (!src.data) return;
//at访问像素点
for (int i = 1; i<src.rows; ++i)
for (int j = 1; j < src.cols; ++j) {
if ((i - 1 >= 0) && (j - 1) >= 0 && (i + 1)<src.rows && (j + 1)<src.cols) {//边缘不进行处理
dst.at<Vec3b>(i, j)[0] = (src.at<Vec3b>(i, j)[0] + src.at<Vec3b>(i - 1, j - 1)[0] + src.at<Vec3b>(i - 1, j)[0] + src.at<Vec3b>(i, j - 1)[0] +
src.at<Vec3b>(i - 1, j + 1)[0] + src.at<Vec3b>(i + 1, j - 1)[0] + src.at<Vec3b>(i + 1, j + 1)[0] + src.at<Vec3b>(i, j + 1)[0] +
src.at<Vec3b>(i + 1, j)[0]) / 9;
dst.at<Vec3b>(i, j)[1] = (src.at<Vec3b>(i, j)[1] + src.at<Vec3b>(i - 1, j - 1)[1] + src.at<Vec3b>(i - 1, j)[1] + src.at<Vec3b>(i, j - 1)[1] +
src.at<Vec3b>(i - 1, j + 1)[1] + src.at<Vec3b>(i + 1, j - 1)[1] + src.at<Vec3b>(i + 1, j + 1)[1] + src.at<Vec3b>(i, j + 1)[1] +
src.at<Vec3b>(i + 1, j)[1]) / 9;
dst.at<Vec3b>(i, j)[2] = (src.at<Vec3b>(i, j)[2] + src.at<Vec3b>(i - 1, j - 1)[2] + src.at<Vec3b>(i - 1, j)[2] + src.at<Vec3b>(i, j - 1)[2] +
src.at<Vec3b>(i - 1, j + 1)[2] + src.at<Vec3b>(i + 1, j - 1)[2] + src.at<Vec3b>(i + 1, j + 1)[2] + src.at<Vec3b>(i, j + 1)[2] +
src.at<Vec3b>(i + 1, j)[2]) / 9;
}
else {//边缘赋值
dst.at<Vec3b>(i, j)[0] = src.at<Vec3b>(i, j)[0];
dst.at<Vec3b>(i, j)[1] = src.at<Vec3b>(i, j)[1];
dst.at<Vec3b>(i, j)[2] = src.at<Vec3b>(i, j)[2];
}
}
}
//图像椒盐化
void salt(Mat &image, int num) {
if (!image.data) return;//防止传入空图
int i, j;
srand(time(NULL));
for (int x = 0; x < num; ++x) {
i = rand() % image.rows;
j = rand() % image.cols;
image.at<Vec3b>(i, j)[0] = 255;
image.at<Vec3b>(i, j)[1] = 255;
image.at<Vec3b>(i, j)[2] = 255;
}
}
void main() {
Mat image = imread("路飞.jpg");
Mat Salt_Image;
image.copyTo(Salt_Image);
salt(Salt_Image, 3000);
Mat image1(image.size(), image.type());
Mat image2;
AverFiltering(Salt_Image, image1);
blur(Salt_Image, image2, Size(3, 3));//openCV库自带的均值滤波函数
imshow("原图", image);
imshow("自定义均值滤波", image1);
imshow("openCV自带的均值滤波", image2);
waitKey();
}
效果图:
可以看到图片变模糊而且噪声并没有很有效的去除,该算法只是模糊化了图片而已。
二.中值滤波
首先,我们复习中值。在一连串数字{1,4,6,8,9}中,数字6就是这串数字的中值。由此我们可以应用到图像处理中。依然我们在图像中去3*3的矩阵,里面有9个像素点,我们将9个像素进行排序,最后将这个矩阵的中心点赋值为这九个像素的中值。
代码:
//求九个数的中值
uchar Median(uchar n1, uchar n2, uchar n3, uchar n4, uchar n5,
uchar n6, uchar n7, uchar n8, uchar n9) {
uchar arr[9];
arr[0] = n1;
arr[1] = n2;
arr[2] = n3;
arr[3] = n4;
arr[4] = n5;
arr[5] = n6;
arr[6] = n7;
arr[7] = n8;
arr[8] = n9;
for (int gap = 9 / 2; gap > 0; gap /= 2)//希尔排序
for (int i = gap; i < 9; ++i)
for (int j = i - gap; j >= 0 && arr[j] > arr[j + gap]; j -= gap)
swap(arr[j], arr[j + gap]);
return arr[4];//返回中值
}
//图像椒盐化
void salt(Mat &image, int num) {
if (!image.data) return;//防止传入空图
int i, j;
srand(time(NULL));
for (int x = 0; x < num; ++x) {
i = rand() % image.rows;
j = rand() % image.cols;
image.at<Vec3b>(i, j)[0] = 255;
image.at<Vec3b>(i, j)[1] = 255;
image.at<Vec3b>(i, j)[2] = 255;
}
}
//中值滤波函数
void MedianFlitering(const Mat &src, Mat &dst) {
if (!src.data)return;
Mat _dst(src.size(), src.type());
for(int i=0;i<src.rows;++i)
for (int j=0; j < src.cols; ++j) {
if ((i - 1) > 0 && (i + 1) < src.rows && (j - 1) > 0 && (j + 1) < src.cols) {
_dst.at<Vec3b>(i, j)[0] = Median(src.at<Vec3b>(i, j)[0], src.at<Vec3b>(i + 1, j + 1)[0],
src.at<Vec3b>(i + 1, j)[0], src.at<Vec3b>(i, j + 1)[0], src.at<Vec3b>(i + 1, j - 1)[0],
src.at<Vec3b>(i - 1, j + 1)[0], src.at<Vec3b>(i - 1, j)[0], src.at<Vec3b>(i, j - 1)[0],
src.at<Vec3b>(i - 1, j - 1)[0]);
_dst.at<Vec3b>(i, j)[1] = Median(src.at<Vec3b>(i, j)[1], src.at<Vec3b>(i + 1, j + 1)[1],
src.at<Vec3b>(i + 1, j)[1], src.at<Vec3b>(i, j + 1)[1], src.at<Vec3b>(i + 1, j - 1)[1],
src.at<Vec3b>(i - 1, j + 1)[1], src.at<Vec3b>(i - 1, j)[1], src.at<Vec3b>(i, j - 1)[1],
src.at<Vec3b>(i - 1, j - 1)[1]);
_dst.at<Vec3b>(i, j)[2] = Median(src.at<Vec3b>(i, j)[2], src.at<Vec3b>(i + 1, j + 1)[2],
src.at<Vec3b>(i + 1, j)[2], src.at<Vec3b>(i, j + 1)[2], src.at<Vec3b>(i + 1, j - 1)[2],
src.at<Vec3b>(i - 1, j + 1)[2], src.at<Vec3b>(i - 1, j)[2], src.at<Vec3b>(i, j - 1)[2],
src.at<Vec3b>(i - 1, j - 1)[2]);
}
else
_dst.at<Vec3b>(i, j) = src.at<Vec3b>(i, j);
}
_dst.copyTo(dst);//拷贝
}
void main() {
Mat image = imread("路飞.jpg");
Mat Salt_Image;
image.copyTo(Salt_Image);
salt(Salt_Image, 3000);
Mat image3, image4;
MedianFlitering(Salt_Image, image3);
medianBlur(Salt_Image, image4, 3);
imshow("自定义中值滤波处理后", image3);
imshow("openCV自带的中值滤波", image4);
waitKey();
}
效果图:
可以看到,椒盐噪声很好的被平滑了,而且也没均值那样模糊化太过于严重。
来源:https://blog.csdn.net/weixin_37720172/article/details/72627543


猜你喜欢
- 数据库中有user表如下:新建一个Django项目:django-admin.py startproject myDjango<pro
- 在备份数据库的时候,数据表中可能存在这样的值array('a'='b','c'='d
- 利用Python将多份excel表格整理成一份表格,抛弃过去逐份打开复制粘贴的方式。直接附上代码:import xlrd import xl
- 本来这篇文章是5月份写的,今天修改了一下内容,就成今天发表的了,CSDN这是出BUG了还是什么改规则了。。。引文:决策树和基于规则的分类器都
- 第一章:连接 FTP 服务器并实现文件夹下载① 连接 FTP 服务器如果 FTP 不用用户名密码就直接可以访问,那就是用的默认用户名 Ano
- 在电子产品的设计中,大家经常提到简洁是设计的重要元素。可是很多产品,不见得简洁就是第一要素。简洁的设计,必须是在对用户需求透彻理解,引导用户
- 在使用的django做测试平台时,,多多少少都会遇到需要定时任务的功能,比如定时执行任务,检查订单之类的。可能是一段时间,比如每隔 10分钟
- 目录什么是pyecharts?pyecharts安装加载折线图的绘制条形图和折线图的结合绘制漏斗图什么是pyecharts?pyechart
- 继上一篇计算checksum校验和,本章通过socket套接字,struct字节打包成二进制,select返回套接字的文件描述符的结合,实现
- 现在有一个横向的IFRAME,需要通过点击iframe外的一个图片来横向滚动iframe内的一个html页,但又不想让看见iframe的滚动
- 具体的upgrade脚本如下:动态删除索引DROP PROCEDURE IF EXISTS UPGRADE;DELIMITER $$CREA
- python封装利用begin end执行多条sql因为业务需求,优化模型运行时间。考虑到sql语句每一次执行都要建立连接,查询,获取数据耗
- 函数可以有0或多个返回值,返回值需要指定数据类型,返回值通过return关键字来指定。return可以有参数,也可以没有参数,这些返回值可以
- 简介 开启慢查询日志,可以让MySQL记录下查询超过指定时
- 一、前言在写业务代码时候,有许多场景需要重试某块业务逻辑,例如网络请求、购物下单等,希望发生异常的时候多重试几次。本文分享如何利用Pytho
- Flask 环境配置你的应用程序可能需要大量的软件包才能正常的工作。如果都不需要 Flask 包的话,你有可能读错了教程。当应用程序运行的时
- 没注意到MooTools的Cookie类在写的时候自己做了一次encode,在读的时候做了一次decode,在一般的情况下,这个不会有什么问
- 如果需要一个简单的Web Server,而不是安装那些复杂的HTTP服务程序,比如:Apache,Nginx等。那么可以使用Python自带
- Update Scanner这个Firefox附加软件也是一种很好的选择。Update Scanner可以同时跟踪多个网页,并为不同的网页设
- 这些包可以独立使用,也可以与其他包一起使用以满足复杂的业务需求。Integration Services 可以提取和转换来自多种源(如 XM