Python使用pyecharts控件绘制图表
作者:springsnow 发布时间:2023-11-08 17:59:54
一、Echarts简介
Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
分v0.5.x 和 V1 间不兼容,导致很多代码不可复用,旧版本将不再维护。
1、特性
简洁的 API 设计,使用如丝滑般流畅,支持链式调用
囊括了 30+ 种常见图表,应有尽有
支持主流 Notebook 环境,Jupyter Notebook 和 JupyterLab
可轻松集成至 Flask,Sanic,Django 等主流 Web 框架
高度灵活的配置项,可轻松搭配出精美的图表
详细的文档和示例,帮助开发者更快的上手项目
多达 400+ 地图文件,并且支持原生百度地图,为地理数据可视化提供强有力的支持
2、相关资源:
官网
项目地址
中文文档(含5分钟入门教程)
English Documentation
示例 Example
二、使用
现在我们来开始正式使用pycharts,这里我们直接使用官方的数据:
1、柱状图-Bar
//导入柱状图-Bar
from pyecharts import Bar
//设置行名
columns = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
//设置数据
data1 = [2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]
data2 = [2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]
//设置柱状图的主标题与副标题
bar = Bar("柱状图", "一年的降水量与蒸发量")
//添加柱状图的数据及配置项
bar.add("降水量", columns, data1, mark_line=["average"], mark_point=["max", "min"])
bar.add("蒸发量", columns, data2, mark_line=["average"], mark_point=["max", "min"])
//生成本地文件(默认为.html文件)
bar.render()
简单的几行代码就可以将数据进行非常好看的可视化,而且还是动态的,在这里还是要安利一下jupyter,pyecharts在v0.1.9.2版本开始,在jupyter上直接调用实例(例如上方直接调用bar)就可以将图表直接表示出来,非常方便。
笔者数了数,目前pyecharts上的图表大概支持到二十多种,接下来,我们再用上方的数据来生成几个数据挖掘常用的图表示例:
2、饼图-Pie
//导入饼图Pie
from pyecharts import Pie
//设置主标题与副标题,标题设置居中,设置宽度为900
pie = Pie("饼状图", "一年的降水量与蒸发量",title_pos='center',width=900)
//加入数据,设置坐标位置为【25,50】,上方的colums选项取消显示
pie.add("降水量", columns, data1 ,center=[25,50],is_legend_show=False)
//加入数据,设置坐标位置为【75,50】,上方的colums选项取消显示,显示label标签
pie.add("蒸发量", columns, data2 ,center=[75,50],is_legend_show=False,is_label_show=True)
//保存图表
pie.render()
3、箱体图-Boxplot
//导入箱型图Boxplot
from pyecharts import Boxplot
boxplot = Boxplot("箱形图", "一年的降水量与蒸发量")
x_axis = ['降水量','蒸发量']
y_axis = [data1,data2]
//prepare_data方法可以将数据转为嵌套的 [min, Q1, median (or Q2), Q3, max]
yaxis = boxplot.prepare_data(y_axis)
boxplot.add("天气统计", x_axis, _yaxis)
boxplot.render()
4、折线图-Line
from pyecharts import Line
line = Line("折线图","一年的降水量与蒸发量")
//is_label_show是设置上方数据是否显示
line.add("降水量", columns, data1, is_label_show=True)
line.add("蒸发量", columns, data2, is_label_show=True)
line.render()
5、雷达图-Rader
from pyecharts import Radar
radar = Radar("雷达图", "一年的降水量与蒸发量")
//由于雷达图传入的数据得为多维数据,所以这里需要做一下处理
radar_data1 = [[2.0, 4.9, 7.0, 23.2, 25.6, 76.7, 135.6, 162.2, 32.6, 20.0, 6.4, 3.3]]
radar_data2 = [[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3]]
//设置column的最大值,为了雷达图更为直观,这里的月份最大值设置有所不同
schema = [
("Jan", 5), ("Feb",10), ("Mar", 10),
("Apr", 50), ("May", 50), ("Jun", 200),
("Jul", 200), ("Aug", 200), ("Sep", 50),
("Oct", 50), ("Nov", 10), ("Dec", 5)
]
//传入坐标
radar.config(schema)
radar.add("降水量",radar_data1)
//一般默认为同一种颜色,这里为了便于区分,需要设置item的颜色
radar.add("蒸发量",radar_data2,item_color="#1C86EE")
radar.render()
6、散点图-scatter
from pyecharts import Scatter
scatter = Scatter("散点图", "一年的降水量与蒸发量")
//xais_name是设置横坐标名称,这里由于显示问题,还需要将y轴名称与y轴的距离进行设置
scatter.add("降水量与蒸发量的散点分布", data1,data2,xaxis_name="降水量",yaxis_name="蒸发量",
yaxis_name_gap=40)
scatter.render()
7、图表布局 Grid
由于标题与图表是属于两个不同的控件,所以这里必须对下方的图表Line进行标题位置设置,否则会出现标题重叠的bug。
from pyecharts import Grid
//设置折线图标题位置
line = Line("折线图","一年的降水量与蒸发量",title_top="45%")
line.add("降水量", columns, data1, is_label_show=True)
line.add("蒸发量", columns, data2, is_label_show=True)
grid = Grid()
//设置两个图表的相对位置
grid.add(bar, grid_bottom="60%")
grid.add(line, grid_top="60%")
grid.render()
from pyecharts import Overlap
overlap = Overlap()
bar = Bar("柱状图-折线图合并", "一年的降水量与蒸发量")
bar.add("降水量", columns, data1, mark_point=["max", "min"])
bar.add("蒸发量", columns, data2, mark_point=["max", "min"])
overlap.add(bar)
overlap.add(line)
overlap.render()
总结
导入相关图表包
进行图表的基础设置,创建图表对象
利用add()方法进行数据输入与图表设置(可以使用print_echarts_options()来输出所有可配置项)
利用render()方法来进行图表保存
pyecharts还有许多好玩的3D图表和地图图表,个人觉得地图图表是最好玩的,各位有兴趣可以去pyecharts的使用手册查看,有中文版的非常方便。
来源:https://www.cnblogs.com/springsnow/p/12575607.html


猜你喜欢
- 今天在看框架的时候无意间看到了document.compatMode,经过一番资料查找,终于搞懂了。文档模式在开发中貌似很少用到,最常见的是
- 阅读目录前言加密算法分类Python加密库DES加密AES加密RSA加密前言据记载,公元前400年,古希腊人发明了置换密码。1881年世界上
- 一、定义正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特定字符、及这些特定字符的组合,组成一个“规则字符串”,这个“规则字符
- 标量(scalar)数据类型标量(scalar)数据类型没有内部组件,他们大致可分为以下四类:. number. character. da
- 大家好!我是 Sergey Kamardin,是 Mail.Ru 的一名工程师。本文主要介绍如何使用 Go 开发高负载的 WebSocket
- 1.最大值max(3,4) ##运行结果为42.最小值min(3,4) ##运行结果为33.求和sum(range
- 自个儿闲的发疯画几个老鼠的表情,送女朋友。。HOHO。经常欺负人。哎。其实被欺负是一种幸福。工作以美国时间为主,所以白天睡到晚上。我不傻,真
- 本文实例讲述了python实现简单socket程序在两台电脑之间传输消息的方法。分享给大家供大家参考。具体分析如下:python开发简单so
- 1 蚂蚁森林简介蚂蚁森林是一项旨在带动公众低碳减排的公益项目,每个人的低碳行为在蚂蚁森林里可计为"绿色能量"。"
- /* 全选择*/ function SB002SelectAll() { var table = document.getElementBy
- 高阶函数是在Python中一个非常有用的功能函数,所谓高阶函数就是一个函数可以用来接收另一个函数作为参数,这样的函数叫做高阶函数。pytho
- 1:构图图形的层次感图形和元素之间的层次感,可以在干扰视觉的同时,突出自身所想体现的主题,这种表现方式往往是比较直接而且有效的方式。我们所说
- 生成器(generator)概念生成器不会把结果保存在一个系列中,而是保存生成器的状态,在每次进行迭代时返回一个值,直到遇到StopIter
- Web Accessibility Initiative Accessible Rich Internet Applications认识AR
- 1、配置Git签名(1)语法$ git config 配置文件作用域 user.name '用户名'$ git config
- 本文更多将会介绍三思在日常中经常会用到的,或者虽然很少用到,但是感觉挺有意思的一些函数。分二类介绍,分别是: 著名函数篇-经常用到的函数 非
- 利用pygame实现了简易版飞机大战。源代码如下:# -*- coding:utf-8 -*-import pygameimport sys
- 不正确地调用Windows应用程序接口可能会产生一些意想不到的副作用,以及潜在地对一个应用程序的代码及数据段的破坏。正确地使用一个空的32位
- 前言对自己写的冗长代码,想重构但又无思路?小编整理了介绍python代码重构优化的一些方法,助你一臂之力。编写干净的 Pythonic 代码
- 1、创建表 createtableTest_Increase( useridnumber(10)NOTNULLprimarykey,/*主键