浅谈keras使用中val_acc和acc值不同步的思考
作者:星之所望 发布时间:2023-03-14 18:29:45
在一个比较好的数据集中,比如在分辨不同文字的任务中,一下是几个样本
使用VGG19,vol_acc和acc基本是同步保持增长的,比如
40/40 [==============================] - 23s 579ms/step - loss: 1.3896 - acc: 0.95 - val_loss: 1.3876 - val_acc: 0.95
Epoch 13/15
40/40 [==============================] - 23s 579ms/step - loss: 1.3829 - acc: 0.96 - val_loss: 1.3964 - val_acc: 0.96
Epoch 14/15
40/40 [==============================] - 23s 580ms/step - loss: 1.3844 - acc: 0.97 - val_loss: 1.3892 - val_acc: 0.97
Epoch 15/15
40/40 [==============================] - 24s 591ms/step - loss: 1.3833 - acc: 0.98 - val_loss: 1.4145 - val_acc: 0.98
这表明训练集和测试集同分布,在训练集中学习的特征确实可以应用到测试集中,这是最好的情况。
通过观察热力图也可以看到,最热的地方集中在特征上。比如在分辨不同的文字。
但很多时候,自己建立的数据集并不完美,或者可能不同类的特征分辨并不明显,这时候用cnn强行进行分类就会出现很多奇葩的情况。
考虑一种极端的情况,比如有四个类,而四个类都是同样的简单图形
那么在学习过程中,会出现如下特征的acc和vol_acc
40/40 [==============================] - 23s 579ms/step - loss: 1.3896 - acc: 0.2547 - val_loss: 1.3876 - val_acc: 0.2500
Epoch 13/15
40/40 [==============================] - 23s 579ms/step - loss: 1.3829 - acc: 0.2844 - val_loss: 1.3964 - val_acc: 0.2281
Epoch 14/15
40/40 [==============================] - 23s 580ms/step - loss: 1.3844 - acc: 0.2922 - val_loss: 1.3892 - val_acc: 0.2469
Epoch 15/15
40/40 [==============================] - 24s 591ms/step - loss: 1.3833 - acc: 0.2578 - val_loss: 1.4145 - val_acc: 0.2500
从热力图上看
可以看到因为没有什么特征,所有热力图分布也没有规律,可以说网络什么都没学到。
那么考虑中间的情况,比如很相似的类学习会怎么样?比如不同年份的硬币
40/40 [==============================] - 25s 614ms/step - loss: 0.0967 - acc: 0.9891 - val_loss: 0.3692 - val_acc: 0.8313
40/40 [==============================] - 23s 580ms/step - loss: 0.0476 - acc: 0.9953 - val_loss: 0.3994 - val_acc: 0.7906
40/40 [==============================] - 23s 578ms/step - loss: 0.0237 - acc: 0.9984 - val_loss: 0.5067 - val_acc: 0.7344
40/40 [==============================] - 23s 579ms/step - loss: 0.0184 - acc: 1.0000 - val_loss: 0.5192 - val_acc: 0.7531
40/40 [==============================] - 23s 582ms/step - loss: 0.0286 - acc: 0.9953 - val_loss: 0.9653 - val_acc: 0.6344
40/40 [==============================] - 23s 584ms/step - loss: 0.0138 - acc: 1.0000 - val_loss: 0.4780 - val_acc: 0.7688
40/40 [==============================] - 23s 583ms/step - loss: 0.0115 - acc: 0.9984 - val_loss: 0.5485 - val_acc: 0.7438
40/40 [==============================] - 23s 581ms/step - loss: 0.0096 - acc: 1.0000 - val_loss: 0.5658 - val_acc: 0.7406
40/40 [==============================] - 23s 578ms/step - loss: 0.0046 - acc: 1.0000 - val_loss: 0.5070 - val_acc: 0.7562
可以看到,虽然网络有一定分辨力,但是学习的特征位置并不对,这可能是网络的分辨力有限,或者数据集过小导致的,具体怎么解决还没有想清楚??可以看到,可以看到除非完全没有特征,否则train acc一定能到100%,但是这个是事没有意义的,这就是过拟合。
一开始同步增长,是在学习特征,后来volacc和acc开始有差异,就是过拟合
这可能是训练集过小导致的,如果图片中只有年份呢?
acc = 0.85,vol_acc=0.85
acc = 0.90,vol_acc=0.90
acc = 0.92,vol_acc=0.92
acc = 0.94,vol_acc=0.92
可以看到,还是能正确分类的,之所以硬币不能正确分类,是因为训练数据集过小,其他特征掩盖了年份的特征,只要增大数据量就行了。
另外。还有几点训练技巧:
1、拓展函数不要怕极端,极端的拓展函数有利于学到目标真正的特征。
2、使用灰度图作为训练集?如果以纹理为主,使用灰度图,灰度图能增强网络的鲁棒性,因为可以减少光照的影响,但是会损失颜色信息,可以用结果看看到底该使用哪种图?
3、使用小的分辨率图片可能错过某些特征,尤其是在小数据集的时候,所以可能的话使用大数据集,或者提高分辨率,根据使用者的目标。
来源:https://blog.csdn.net/weixin_42769131/article/details/90708113
猜你喜欢
- 糟糕的SQL查询语句可对整个应用程序的运行产生严重的影响,其不仅消耗掉更多的数据库时间,且它将对其他应用组件产生影响。如同其它学科,优化查询
- finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:1.固定参数 for na
- 本文实例讲述了php输出xml必须header的解决方法。分享给大家供大家参考。具体方法如下:问题描述:最近在做一个xml输出时发现我们直接
- 前言本文记录了对于Python的数据类型中元祖(Tuple)和字典(Dict)的一些认识,以及部分内置方法的介绍。下面话不多说,来看看详细的
- 一、环境搭建1、安装python+pycharm软件 。python安装网址官网:https://www.python.org/about/
- 在开发中我们经常遇到这样的需求,需要用户直接点击一个链接进入到一个页面,用户点击后链接后会触发401拦截返回登录界面,登录后又跳转到链接的页
- 这篇文章主要介绍了微信小程序封装多张图片上传api代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要
- try { int readByte = 0;  
- 本文简单介绍了Python绘图库Matplotlib的安装,简介如下:matplotlib是python最著名的绘图库,它提供了一整套和ma
- 1.算法:对于一组关键字{K1,K2,…,Kn}, 首先从K1,K2,…,Kn中选择最小值,假如它是 Kz,则将Kz与 K1对换;然后从K2
- 在使用mybatis或者mybatis-plus时候,有些时候会出现数据库的字段名和实体类的字段名不一致的情况,如果运行那么这个字段就会无法
- 1. 哈希算法基础1.1 哈希算法的定义哈希算法(Hash Algorithm)是一种将任意长度的输入数据映射为固定长度哈希值的算法。它具有
- 在命令行中输入命令并不是一个好主意,会造成安全问题。但是如果你决定去写一个应用,而这个应用需要在命令行中使用密码或者其他敏感信息。那么,你能
- Numpy是什么很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。
- 2006-10-8表数据:tab1id name numA  
- 近段时间由于修改一个ASP程序(有SQL注入漏洞),在网上找了很多相关的一些防范办法,都不近人意,所以我将现在网上的一些方法综合改良了一下,
- 可用下列函数来产生你需要的东西,将它们发送给用户就可以啦:<%response.write makePassword(16)
- 1.去官网下载PyGame 注意:要下载对应版本的包 官网地址:http://www.pyg
- 本文实例分析了Python操作Access数据库基本步骤。分享给大家供大家参考,具体如下:Python编程语言的出现,带给开发人员非常大的好
- 目的临床数据的记录时间和对应标签(逗号后面的数字)记录在txt文件里,要把标签转换为3类标签,并且计算出每个标签的分别持续时间,然后绘制成柱