网络编程
位置:首页>> 网络编程>> Python编程>> Python Sympy计算梯度、散度和旋度的实例

Python Sympy计算梯度、散度和旋度的实例

作者:落叶_小唱  发布时间:2023-03-11 05:14:10 

标签:Python,Sympy,梯度,散度,旋度

sympy有个vector 模块,里面提供了求解标量场、向量场的梯度、散度、旋度等计算,官方参考连接:

http://docs.sympy.org/latest/modules/vector/index.html

sympy中计算梯度、散度和旋度主要有两种方式:

一个是使用∇∇算子,sympy提供了类Del(),该类的方法有:cross、dot和gradient,cross就是叉乘,计算旋度的,dot是点乘,用于计算散度,gradient自然就是计算梯度的。

另一种方法就是直接调用相关的API:curl、divergence和gradient,这些函数都在模块sympy.vector 下面。

使用sympy计算梯度、散度和旋度之前,首先要确定坐标系,sympy.vector模块里提供了构建坐标系的类,常见的是笛卡尔坐标系, CoordSys3D,根据下面的例子可以了解到相应应用。

(1)计算梯度


## 1 gradient

C = CoordSys3D('C')
delop = Del() # nabla算子

# 标量场 f = x**2*y-xy
f = C.x**2*C.y - C.x*C.y

res = delop.gradient(f, doit=True) # 使用nabla算子
# res = delop(f).doit()
res = gradient(f) # 直接使用gradient

print(res) # (2*C.x*C.y - C.y)*C.i + (C.x**2 - C.x)*C.j

(2)计算散度


## divergence

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.dot(f, doit=True)

# res = divergence(f)

print(res) # 2*C.x*C.y - C.x,即2xy-x,向量场的散度是标量

(3)计算旋度


## curl

C = CoordSys3D('C')
delop = Del() # nabla算子

# 向量场 f = x**2*y*i-xy*j
f = C.x**2*C.y*C.i - C.x*C.y*C.j

res = delop.cross(f, doit=True)

# res = curl(f)

print(res) # (-C.x**2 - C.y)*C.k,即(-x**2-y)*k,向量场的旋度是向量

来源:https://blog.csdn.net/ouening/article/details/80712269

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com