opencv 图像轮廓的实现示例
作者:总裁余 发布时间:2023-07-21 15:37:17
图像轮廓
Contours:轮廓
轮廓是将没有连着一起的边缘连着一起。
边缘检测检测出边缘,边缘有些未连接在一起。
注意问题
1.对象为二值图像,首先进行阈值分割或者边缘检测。
2.查找轮廓需要更改原始图像,通常使用原始图像的一份进行拷贝。
3.在opencv里,是从黑色背景里找白色。因此对象必须是白色,背景为黑色。
方法
cv2.findContours()
cv2.drawContours()
通过cv2.findContours() 查找轮廓在哪里,再通过 cv2.drawContours()将查找的轮廓绘制出来。
contours,hierarchy=cv2.findContours(image,mode,method)
contours:轮廓
hierarchy:图像的拓扑信息(轮廓层次)(存储上一个轮廓,父轮廓…)
image:原始图像
mode:轮廓检索方式
method:轮廓的近似方法
r=cv2.drawContours(image, contours, contourIdx, color[, thickness])
r:目标图像
image:原始图像
contours: 所有的输入轮廓边缘数组
contourIdx :需要绘制的边缘索引,如果全部绘制为-1。如果有多个目标,可以绘制第一个目标0,第二个目标1,第三个目标2.。。
color:绘制的颜色,为BGR格式的SCalar
thickness:可选,绘制的密度,即轮廓的画笔粗细
import cv2
import numpy as np
o = cv2.imread('lena256.bmp')
gray = cv2.cvtColor(o,cv2.COLOR_BGR2GRAY)#BGR-灰度
ret, binary = cv2.threshold(gray,127,255,cv2.THRESH_BINARY)#二值图像
contours, hierarchy = cv2.findContours(binary,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
co=o.copy()#对原始图像进行绘制
r=cv2.drawContours(co,contours,-1,(0,127,127),4)#co为复制图像,轮廓会修改原始图像
cv2.imshow("original",o)
cv2.imshow("contours",r)
cv2.waitKey()
cv2.cvtColor(input_image, flag)用于颜色空间转换。
input_image:需要转换的图像
flag:转换类型
cv2.COLOR_BGR2GRAY : BGR -灰度
cv2.COLOR_BGR2RGB:BGR-RGB
cv2.COLOR_BGR2HSV:BGR-HSV
最小外接圆
函数cv2.minEnclosingCircle() 可以帮我们找到一个对象的外切圆。它是所有能够包括对象的圆中面积最小的一个。
案例:现有下面这样一张图片,要求将图片中心的花朵标记出来。
代码:
import numpy as np
import cv2 as cv
img=cv.imread("image.jpg",0)
#为了显示方便,这里将图片进行缩放
x,y=img.shape
img=cv.resize(img,(y//2,x//2))
#将图片二值化,由于前景物体是黑色的,因此在二值化时采用cv.THRESH_TOZERO_INV这种方式
ret,thresh=cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
#寻找图片中的轮廓,mode=cv.RETR_EXTERNAL,这是为了寻找最外层的轮廓
im,contour,hierarchy=cv.findContours(thresh,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)
#cv.minEnclosingCircle函数的参数要求是ndarray类型,因此这里将找到的
# 轮廓中的所有的点存放在一个列表中,然后使用这个列表创建数组
point_list=[]
for i in contour:
for j in i:
point_list.append(j[0])
point_array=np.array(point_list)
#使用最小外接圆函数,返回值为这个圆的圆心坐标和圆半径长度
(x,y),radius=cv.minEnclosingCircle(point_array)
#图片上的坐标均为整数,圆的半径也要求是整数,因此将它们强制转换为int类型
center=(int(x),int(y))
color=cv.cvtColor(img,cv.COLOR_GRAY2BGR)
color=cv.circle(color,center,radius=int(radius),color=(0,0,255),thickness=2)
#显示图片
cv.imshow("color",color)
cv.waitKey(0)
cv.destroyAllWindows()
程序结果:
凸包
凸包与轮廓近似相似,但不同,虽然有些情况下它们给出的结果是一样的。函数cv2.convexHull() 可以用来检测一个曲线是否具有凸性缺陷,并能纠正缺陷。一般来说,凸性曲线总是凸出来的,至少是平的。在opencv中使用函数cv.convexhull来寻找轮廓的凸包,该函数的定义为:
hull=cv.convexHull( points[, hull[, clockwise[, returnPoints]]])
这个函数的参数如下:
Points:我们需要传入的轮廓
Hull:输出,通常不需要
clockwise: 取向标志,如果为True,凸包的方向是顺时针方向,否则为逆时针方向;
returnPoints: 默认为True. 它会返回凸包上点的坐标。如果设置为False,就会返回与凸包点对应的轮廓上的点。
还是上面的这副图片,我们对上面的代码稍加修改,可以得到凸包的形状,代码如下:
import numpy as np
import cv2 as cv
img=cv.imread("image.jpg",0)
#为了显示方便,这里将图片进行缩放
x,y=img.shape
img=cv.resize(img,(y//2,x//2))
#将图片二值化,由于前景物体是黑色的,因此在二值化时采用cv.THRESH_TOZERO_INV这种方式
ret,thresh=cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
#寻找图片中的轮廓,mode=cv.RETR_EXTERNAL,这是为了寻找最外层的轮廓
im,contour,hierarchy=cv.findContours(thresh,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)
#cv.minEnclosingCircle函数的参数要求是ndarray类型,因此这里将找到的
# 轮廓中的所有的点存放在一个列表中,然后使用这个列表创建数组
point_list=[]
for i in contour:
for j in i:
point_list.append(j[0])
point_array=np.array(point_list)
#寻找凸包,返回值是凸包上的点
hull=cv.convexHull(point_array,returnPoints=True)
color=cv.cvtColor(img,cv.COLOR_GRAY2BGR)
#将凸包绘制出来,需要注意的是:这里需要将凸包上点的坐标写成一个
#列表传入函数cv.ploylines,否则绘制出来的只是凸包上的一系列点
color=cv.polylines(color,[hull],True,(0,0,255),2)
#显示图片
cv.imshow("color",color)
cv.waitKey(0)
cv.destroyAllWindows()
程序运行结果为:
图像掩模和像素点
有时我们需要构成对象的所有像素点,我们可以将图像的所有轮廓提取出来,然后使用函数cv.drawContours()将轮廓内的区域填充为指定的颜色。然后使用cv.findNonZeros()函数将非零像素点的坐标提取出来,这样就得到了构成对象的像素点。我们还是在上面的图片上进行操作,代码如下:
import numpy as np
import cv2 as cv
img=cv.imread("image.jpg",0)
#为了显示方便,这里将图片进行缩放
x,y=img.shape
img=cv.resize(img,(y//2,x//2))
#将图片二值化,由于前景物体是黑色的,因此在二值化时采用cv.THRESH_TOZERO_INV这种方式
ret,thresh=cv.threshold(img,127,255,cv.THRESH_TOZERO_INV)
#寻找图片中的轮廓,mode=cv.RETR_EXTERNAL,这是为了寻找最外层的轮廓
im,contour,hierarchy=cv.findContours(thresh,cv.RETR_EXTERNAL,cv.CHAIN_APPROX_SIMPLE)
#创建一个填充轮廓内像素点的画板,背景颜色为黑色,这里我们使用numpy创建一个全零的二维数组
mask=np.zeros(img.shape,dtype=np.uint8)
#将参数thickness设置为-1,这样cv.drawContours函数就会将轮廓内的像素点填充为指定的颜色
mask=cv.drawContours(mask,contour,contourIdx=-1,color=(255,255,255),thickness=-1)
#寻找mask内非零像素点,将其存放为一个numpy数组
NonZeroPoints=np.array(cv.findNonZero(mask))
#形状变换,将其改变为一个二维数组,数组的每一行存放一个非零像素点的坐标
NonZeroPoints=NonZeroPoints.reshape((-1,2))
#验证我们提取出来的像素点坐标是否正确,我们使用变量
#column和row分别存放非零像素点在图像中坐标的列数和行数
column=NonZeroPoints[:,0]
row=NonZeroPoints[:,1]
#在新的画板上将这些点绘制出来,将这些坐标对应的像素点的值设为255
mask1=np.zeros(img.shape)
mask1[row,column]=255
#显示结果
cv.imshow("mask",mask)
cv.imshow("mask1",mask1)
cv.waitKey(0)
cv.destroyAllWindows()
程序运行结果:
通过上面两幅图的对比结果,我们可以看到:对象的组成像素点被正确地提取出来了。
来源:https://blog.csdn.net/kobeyu652453/article/details/107164978


猜你喜欢
- idea激活码失效说明在2020.11.26,idea又迎来了一次大规模的更新,好多小伙伴发现idea激活码已经无法用了,显示需要重新激活,
- 我就废话不多说了,还是直接看代码吧!import osimport timeimport mmapfilename = 'test.
- 由于asp中是使用双引号作为字符串的开始和结束标志的,单一个字符串中的双引号出现次数大于两个时,程序就有可能运行错误。asp中是怎么输出引号
- 上篇文章介绍了什么是进程、进程与程序的关系、进程的创建与使用、创建进程池等,接下来就来介绍一下进程同步及进程通信。进程同步当多个进程使用同一
- 运用Jmeter正则提取器,可以从请求的响应结果中取到需要的内容,从而实现关联。关联是请求与请求之间存在数据依赖关系,需要从上一个请求获取下
- 有时候我们需要将一个对象的某些属性选取出来,比方说我们有一个用数组表示的数据库表,我们需要一些函数来 select (选取) 几个字段:fu
- 如下所示:import pandas as pddata = pd.read_excel('123.xls','Sh
- 1、引言小 * 丝:鱼哥,最近有点不像话了。小鱼:嗯?? 啥个意思嘛~小 * 丝:一周了,没分享小知识了。小鱼:就因为这个??小 * 丝:那是,我这么爱
- 文字链接可以说是网页中最常见的页面元素了,默认的文字链接样式都是带下划线的效果,这种一陈不变的外观可能使很多朋友都想改变它,以使之符合页面的
- 准备工作查看肯德基官网的请求方法:post请求。X-Requested-With: XMLHttpRequest 判断得肯德基官网是ajax
- 一般情况下,在函数中可以使用一个装饰器,但是有时也会有两个或两个以上的装饰器。多个装饰器装饰的顺序是从里到外(就近原则),而调用的顺序是从外
- css usage是一个基于firebug的firefox扩展,可以用来查看页面中的CSS的使用情况,可以清楚的查看css文件中所有的规则在
- 以下是我这几天一直在用的几个命令,先记下来,以后会整理一份mysql详细的使用文档注:[]中代表名字,需要用库名或者表名替换显示所有的库:s
- 目录前言控制刻度间距控制刻度标签更简单的设置方式高级刻度标签控制总结前言我们首先来介绍坐标轴的范围,坐标轴的范围很好理解,有的时候我们产出的
- 一、需求说明当我们写爬虫的时候,经常会遇到json格式的数据,它通常是如下结构:data = [{'name':'小
- 关于SQL UNION 操作符 UNION 操作符用于合并两个或多个 SELECT 语句的结果集。 注意: 1.UNION 内部的 SELE
- 在python类当中,经常会遇到@classmethod和@staticmethod这两个装饰器,那么到底它们的区别和作用是啥子呢?具体来看
- 一 ,做好安装前的清理工作rpm -pa | grep mysql 或者 rpm -qa | grep -i mysqlyum remove
- 代码如下: Function closeHTML(strContent) Dim arrTags, i, OpenPos, ClosePos
- 1. pyecharts 模块介绍Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。