网络编程
位置:首页>> 网络编程>> Python编程>> Keras模型转成tensorflow的.pb操作

Keras模型转成tensorflow的.pb操作

作者:VickyD1023  发布时间:2023-12-22 13:10:34 

标签:Keras,tensorflow,.pb

Keras的.h5模型转成tensorflow的.pb格式模型,方便后期的前端部署。直接上代码


from keras.models import Model
from keras.layers import Dense, Dropout
from keras.applications.mobilenet import MobileNet
from keras.applications.mobilenet import preprocess_input
from keras.preprocessing.image import load_img, img_to_array
import tensorflow as tf
from keras import backend as K
import os

base_model = MobileNet((None, None, 3), alpha=1, include_top=False, pooling='avg', weights=None)
x = Dropout(0.75)(base_model.output)
x = Dense(10, activation='softmax')(x)

model = Model(base_model.input, x)
model.load_weights('mobilenet_weights.h5')

def freeze_session(session, keep_var_names=None, output_names=None, clear_devices=True):
from tensorflow.python.framework.graph_util import convert_variables_to_constants
graph = session.graph
with graph.as_default():
 freeze_var_names = list(set(v.op.name for v in tf.global_variables()).difference(keep_var_names or []))
 output_names = output_names or []
 output_names += [v.op.name for v in tf.global_variables()]
 input_graph_def = graph.as_graph_def()
 if clear_devices:
  for node in input_graph_def.node:
   node.device = ""
 frozen_graph = convert_variables_to_constants(session, input_graph_def,
            output_names, freeze_var_names)
 return frozen_graph

output_graph_name = 'NIMA.pb'
output_fld = ''
#K.set_learning_phase(0)

print('input is :', model.input.name)
print ('output is:', model.output.name)

sess = K.get_session()
frozen_graph = freeze_session(K.get_session(), output_names=[model.output.op.name])

from tensorflow.python.framework import graph_io
graph_io.write_graph(frozen_graph, output_fld, output_graph_name, as_text=False)
print('saved the constant graph (ready for inference) at: ', os.path.join(output_fld, output_graph_name))

补充知识:keras h5 model 转换为tflite

在移动端的模型,若选择tensorflow或者keras最基本的就是生成tflite文件,以本文记录一次转换过程。

环境

tensorflow 1.12.0

python 3.6.5

h5 model saved by `model.save('tf.h5')`

直接转换


`tflite_convert --output_file=tf.tflite --keras_model_file=tf.h5`
output
`TypeError: __init__() missing 2 required positional arguments: 'filters' and 'kernel_size'`

先转成pb再转tflite


```

git clone git@github.com:amir-abdi/keras_to_tensorflow.git
cd keras_to_tensorflow
python keras_to_tensorflow.py --input_model=path/to/tf.h5 --output_model=path/to/tf.pb
tflite_convert \

--output_file=tf.tflite \
--graph_def_file=tf.pb \
--input_arrays=convolution2d_1_input \
--output_arrays=dense_3/BiasAdd \
--input_shape=1,3,448,448
```

参数说明,input_arrays和output_arrays是model的起始输入变量名和结束变量名,input_shape是和input_arrays对应

官网是说需要用到tenorboard来查看,一个比较trick的方法

先执行上面的命令,会报convolution2d_1_input找不到,在堆栈里面有convert_saved_model.py文件,get_tensors_from_tensor_names()这个方法,添加`print(list(tensor_name_to_tensor))` 到 tensor_name_to_tensor 这个变量下面,再执行一遍,会打印出所有tensor的名字,再根据自己的模型很容易就能判断出实际的name。

来源:https://blog.csdn.net/q6324266/article/details/85262438

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com