Python使用pyfinance包进行证券收益分析
作者:Python学习与数据挖掘 发布时间:2023-06-02 16:55:13
pyfinance简介
datasets.py :金融数据下载(基于request进行数据爬虫,有些数据由于外网受限已经无法下载);
general.py:通用财务计算,例如主动份额计算,收益分配近似值和跟踪误差优化;
ols.py:回归分析,支持pandas滚动窗口回归;
options.py:期权衍生品计算和策略分析;
returns.py:通过CAPM框架对财务时间序列进行统计分析,旨在模拟FactSet Research Systems和Zephyr等软件的功能,并提高了速度和灵活性;
utils.py:基础架构。
本文主要围绕returns模块,介绍pyfinance在证券投资分析中的应用,后续将逐步介绍datasets、options、ols等模块。
returns模块应用实例
pyfinance的安装比较简单,直接在cmd(或anaconda prompt)上输入"pip install pyfinance"即可。returns模块主要以TSeries类为主体(暂不支持dataframe),相当于对pandas的Series进行类扩展,使其实现更多功能,支持证券投资分析中基于CAMP(资本资产定价模型)框架的业绩评价指标计算。引用returns模块时,直接使用"from pyfinance import TSeries"即可。
下面以tushare为数据接口,先定义一个数据获取函数,在函数里对收益率数据使用TSeries进行转换,之后便可以直接使用TSeries类的相关函数。
import pandas as pd
import numpy as np
from pyfinance import TSeries
import tushare as ts
def get_data(code,start='2011-01-01',end=''):
df=ts.get_k_data(code,start,end)
df.index=pd.to_datetime(df.date)
ret=df.close/df.close.shift(1)-1
#返回TSeries序列
return TSeries(ret.dropna())
#获取中国平安数据
tss=get_data('601318')
#tss.head()
收益率计算
pyfinance的returns提供了年化收益率(anlzd_ret)、累计收益率(cuml_ret)和周期收益率(rollup)等,下面以平安银行股票为例,计算收益率指标。
#年化收益率
anl_ret=tss.anlzd_ret()
#累计收益率
cum_ret=tss.cuml_ret()
#计算周期收益率
q_ret=tss.rollup('Q')
a_ret=tss.rollup('A')
print(f'年化收益率:{anl_ret*100:.2f}%')
print(f'累计收益率:{cum_ret*100:.2f}%')
#print(f'季度收益率:{q_ret.tail().round(4)}')
#print(f'历年收益率:{a_ret.round(4)}')
输出结果:
累计收益率:205.79%
年化收益率:12.24%
#可视化每个季度(年)收益率
from pyecharts import Bar
attr=q_ret.index.strftime('%Y%m')
v1=(q_ret*100).round(2).values
bar=Bar('中国平安各季度收益率%')bar.add('',attr,v1,)
bar
from pyecharts import Bar
attr=a_ret.index.strftime('%Y')
v1=(a_ret*100).round(2).values
bar=Bar('中国平安历年收益率%')
bar.add('',attr,v1,is_label_show=True,
is_splitline_show=False)
bar
CAPM模型相关指标
基于CAPM模型计算alpha、beta、回归决定系数R2、t统计量和残差项等。实际上主要使用了ols回归,因此如果要获得这些动态的alpha和beta值,可以进一步借助ols模块的滚动回归函数(PandasRollingOLS)了,这将在后续推文介绍其应用。
#以沪深300指数为基准
#为保证二者长度一致,以中国平安的索引为准
benchmark=get_data('hs300')
benchmark=benchmark.loc[tss.index]
alpha,beta,rsq=tss.alpha(benchmark),tss.beta(benchmark),tss.rsq(benchmark)
tstat_a,tstat_b=tss.tstat_alpha(benchmark),tss.tstat_beta(benchmark)
print(f'alpha:{alpha:.4f},t统计量:{tstat_a:.2f}')
print(f'beta :{beta:.4f},t统计量:{tstat_b:.2f}')
print(f'回归决定系数R2:{tss.rsq(benchmark):.3f}')
alpha:0.0004,t统计量:1.55
beta :1.0634,t统计量:60.09
回归决定系数R2:0.606
风险指标
风险指标主要包括标准差和最大回撤。在计算标准差时,注意需要修改默认参数,打开pyfinance安装包所在路径,如果是安装了Anaconda,进入以下路径:
c:\Anaconda3\Lib\site-packages\pyfinance,打开returns源文件,找到anlzd_stdev和semi_stdev函数,将freq默认None改成250(一年的交易天数)。
#年化标准差
a_std=tss.anlzd_stdev()
#下行标准差
s_std=tss.semi_stdev()
#最大回撤
md=tss.max_drawdown()
print(f'年化标准差:{a_std*100:.2f}%')
print(f'下偏标准差:{s_std*100:.2f}%')
print(f'最大回撤差:{md*100:.2f}%')
年化标准差:31.37%
下偏标准差:0.43%
最大回撤差:-45.76%
下偏标准差主要是为解决收益率分布的不对称问题,当收益率函数分布左偏的情况下,使用正态分布会低估风险,因此使用传统夏普比率分母使用全样本标准差进行估计不太合适,应使用收益对无风险投资收益的偏离。
基准比较指标
基准比较指标是需要指定一个基准(benchmark),如将沪深300指数作为中国平安个股的基准进行比较分析。
bat=tss.batting_avg(benchmark)
uc=tss.up_capture(benchmark)
dc=tss.down_capture(benchmark)
tc=uc/dc
pct_neg=tss.pct_negative()
pct_pos=tss.pct_positive()
print(f'比基准收益高的时间占比:{bat*100:.2f}%')
print(f'上行期与基准收益比:{uc*100:.2f}%')
print(f'下行期与基准收益比:{dc*100:.2f}%')
print(f'上行期与下行期比:{tc*100:.2f}%')
print(f'个股下行(收益负)时间占比:{pct_neg*100:.2f}%')
print(f'个股上行(收益正)时间占比:{pct_pos*100:.2f}%')
比基准收益高的时间占比:47.83%
上行期与基准收益比:111.70%
下行期与基准收益比:105.32%
上行期与下行期比:106.06%
个股下行(收益负)时间占比:48.94%
个股上行(收益正)时间占比:50.00%
此外,信息比率和特雷诺指数是两个常用的基准比较评价指标,特别是用于对基金产品或投资组合的业绩进行量化评价。
信息比率(information ratio):以马克维茨的均值方差模型为基础,衡量超额风险所带来的超额收益,表示单位主动风险所带来的超额收益。IR=α ∕ ω (α为组合的超额收益,ω为主动风险),分子α为真实预期收益率与定价模型所计算出的收益率的差,分母为残差风险即残差项的标准差。
特雷诺指数(Treynor ratio):衡量单位风险的超额收益,计算公式为:TR=(Rp―Rf)/βp,其中:TR表示特雷诺业绩指数,Rp表示某投资组合平均收益率,Rf为平均无风险利率,βp表示某投资组合的系统风险。
ir=tss.info_ratio(benchmark)
tr=tss.treynor_ratio(benchmark)
print(f'信息比率:{ir:.3f}')
print(f'特雷诺指数:{tr:.3f}')
信息比率:0.433
特雷诺指数:0.096
风险调整收益指标
风险调整收益率指标比较常用的有夏普比率(sharpe ratio)、索提诺比率(sortino ratio)和卡玛比率(calmar ratio),这三个指标都是风险调整后收益比率,因此分子都是收益指标,分母都是风险指标。
夏普比率(Sharpe Ratio):风险调整后的收益率,计算公式:=[E(Rp)-Rf]/σp,其中E(Rp):投资组合预期报酬率,Rf:无风险利率,σp:投资组合的标准差。计算投资组合每承受一单位总风险,会产生多少的超额报酬。
索提诺比率(Sortino Ratio):与夏普比率思路一致,核心在于分母应用了下行波动率概念(Downside Risk),计算标准差的时候,不采用均值,而是一个设定的可接受最小收益率(r_min),收益率序列中,超出这个最小收益率的收益距离按照0计算,低于这个收益率的平方距离累积,这样标准差就变成了半个下行标准差。对应的,索提诺比率的分子也采用策略收益超出最低收益的部分。与夏普比率相比,索提诺比率更看重对(左)尾部的预期损失分析,而夏普比率则是对全体样本进行分析。
Calmar比率(Calmar Ratio) :描述收益和最大回撤之间的关系,计算方式为年化收益率与历史最大回撤之间的比率。Calmar比率数值越大,投资组合业绩表现越好。
sr=tss.sharpe_ratio()
sor=tss.sortino_ratio(freq=250)
cr=tss.calmar_ratio()
print(f'夏普比率:{sr:.2f}')
print(f'索提诺比率:{sor:.2f}')
print(f'卡玛比率:{cr:.2f}')
夏普比率:0.33
索提诺比率:28.35
卡玛比率:0.27
综合业绩评价指标分析实例
下面将上述常用指标进行综合,并获取多只个股进行比较分析。
def performance(code,start='2011-01-01',end=''):
tss=get_data(code,start,end)
benchmark=get_data('hs300',start,end).loc[tss.index]
dd={}
#收益率
#年化收益率
dd['年化收益率']=tss.anlzd_ret()
#累积收益率
dd['累计收益率']=tss.cuml_ret()
#alpha和beta
dd['alpha']=tss.alpha(benchmark)
dd['beta']=tss.beta(benchmark)
#风险指标
#年化标准差
dd['年化标准差']=tss.anlzd_stdev()
#下行标准差
dd['下行标准差']=tss.semi_stdev()
#最大回撤
dd['最大回撤']=tss.max_drawdown()
#信息比率和特雷诺指数
dd['信息比率']=tss.info_ratio(benchmark)
dd['特雷纳指数']=tss.treynor_ratio(benchmark)
#风险调整收益率
dd['夏普比率']=tss.sharpe_ratio()
dd['索提诺比率']=tss.sortino_ratio(freq=250)
dd['calmar比率']=tss.calmar_ratio()
df=pd.DataFrame(dd.values(),index=dd.keys()).round(4)
return df
获取多只个股(也构建投资组合)数据,对比评估业绩评价指标:
#获取多只股票数据
df=pd.DataFrame(index=performance('601318').index)
stocks={'中国平安':'601318','贵州茅台':'600519',\
'海天味业':'603288','格力电器':'000651',\
'万科A':'00002','比亚迪':'002594',\
'云南白药':'000538','双汇发展':'000895',\
'海尔智家':'600690','青岛啤酒':'600600'}
for name,code in stocks.items():
try:
df[name]=performance(code).values
except:
continue
d
来源:https://blog.csdn.net/weixin_38037405/article/details/121388912
猜你喜欢
- # 有时候我们提前知道了一个数组的大小,需要给每个元素赋值,此时append好像不管用。我们需要定义一个定# # 长的数组,python中代
- 一、成员 1.1 变量实例变量,属于对象,每个对象中各自维护自己的数据。类变量,属于类,可以被所有对象共享,一般用于给对象提供公共
- php获取 checkbox复选框值的方法 <html xmlns="https://www.aspxhome.net/19
- 本文实例讲述了Python通过公共键对字典列表排序算法。分享给大家供大家参考,具体如下:问题:想根据一个或多个字典中的值来对列表排序解决方案
- 在我们人生的路途中,找工作是每个人都会经历的阶段,小编曾经也是苦苦求职大军中的一员。怀着对以后的规划和想象,我们在找工作的时候,会看一些招聘
- 名片管理系统一、思路1、定义名片操作选项2、把增加的名片信息存储到字典中3、所有名片信息存储到列表4、对于误操作给出提示二、用到的知识点1、
- 后来参巧网上的文献后,通过Http方式成功连上服务器的MYSql数据库。特此记录一下:首先到NaviCat官网(www.NaviCat.co
- 一、os模块os 模块是 Python中的一个内置模块,也是 Python中整理文件和目录最为常用的模块。该模块提供了非常丰富的方法用来处理
- 高级加密标准(AES,Advanced Encryption Standard)为最常见的对称加密算法(微信小程序加密传输就是用这个加密算法
- python 远程统计文件#!/usr/bin/python#encoding=utf-8import timeimport osimpor
- 只需要在fckeditor\editor\filemanager\connectors\asp文件夹下的commands.asp修改一下即可
- sys模块在使用python开发脚本的时候,作为一个运维工具,或者是其他工具需要在接受用户参数运行时,这里就可以用到命令行传参的方式,可以给
- 使用json.dumps输出中文在使用json.dumps时要注意一个问题>>> import json>>&
- 程序需求:输入用户名,密码认证成功显示欢迎信息输入错误三次后锁定用户流程图:好像画的不咋地查看代码:#!/usr/bin/env pytho
- Python是一个很酷的语言,因为你可以在很短的时间内利用很少的代码做很多事情。不仅如此,它还能轻松地支持多任务,比如多进程等。Python
- css: .main { height:360px; width:290px; border:1px solid #444444; font
- 无法远程登入MySQL数据库的几种解决办法方法一:尝试用MySQL Adminstrator GUI Tool登入MySQL Server,
- 柱状图分类QBarSeries:竖向柱状图QPercentBarSeries:竖向百分比柱状图QStackedBarSeries:竖向堆叠柱
- 本文实例讲述了python常见数制转换用法。分享给大家供大家参考。具体分析如下:1.进位制度Python中二进制是以0b开头的:例如: 0b
- 最近刚接触了公司的服务器,使用的是Windows 2003 server + IIS 6.0 服务器,在使用无组件上传文件时产生这个错误时: