Python使用Tkinter实现机器人走迷宫
作者:songrotek 发布时间:2022-12-18 16:49:51
标签:Python,Tkinter,机器人
这本是课程的一个作业研究搜索算法,当时研究了一下Tkinter,然后写了个很简单的机器人走迷宫的界面,并且使用了各种搜索算法来进行搜索,如下图:
使用A*寻找最优路径:
由于时间关系,不分析了,我自己贴代码吧。希望对一些也要用Tkinter的人有帮助。
from Tkinter import *
from random import *
import time
import numpy as np
import util
class Directions:
NORTH = 'North'
SOUTH = 'South'
EAST = 'East'
WEST = 'West'
# Detect elements in the map
window = Tk()
window.title('CityBusPlanner')
window.resizable(0,0)
width = 25
(x, y) = (22, 22)
totalsteps = 0
buidings = [(0, 0), (1, 0), (2, 0), (3, 0), (7, 0), (8, 0), (11, 0), (12, 0), (13, 0),
(17, 0), (18, 0), (21, 0), (21, 1), (2, 2), (5, 2), (8, 2), (9, 2), (12, 2),
(14, 2), (15, 2), (16, 2), (17, 2), (21, 2), (2, 3), (4, 3), (5, 3), (7, 3),
(8, 3), (11, 3), (17, 3), (18, 3), (19, 3), (2, 4), (4, 4), (5, 4), (8, 4),
(9, 4), (14, 4), (15, 4),(17, 4), (18, 4), (19, 4), (0, 6), (2, 6), (4, 6),
(7, 6), (8, 6), (11, 6), (12, 6), (14, 6), (15, 6),(16, 6), (18, 6), (19, 6),
(2, 7), (5, 7), (21, 7), (0, 8), (2, 8), (11, 8), (14, 8), (15, 8), (17, 8),
(18, 8), (21, 8), (4, 9), (5, 9), (7, 9), (9, 9), (11, 9), (14, 9), (21, 9),
(2, 10), (7, 10), (14, 10), (17, 10), (19, 10), (0, 11), (2, 11), (4, 11),
(5, 11), (7, 11), (8, 11), (9, 11), (11, 11), (12, 11), (14, 11), (15, 11),
(16, 11), (17, 11), (18, 11), (19, 11), (0, 13), (2, 13), (3, 13), (5, 13),
(7, 13), (8, 13), (9, 13), (14, 13), (17, 13), (18, 13), (21, 13), (2, 14),
(3, 14), (5, 14), (7, 14),(9, 14), (12, 14), (14, 14), (15, 14), (17, 14),
(18, 14), (21, 14), (2, 15), (3, 15), (5, 15), (7, 15), (9, 15), (12, 15),
(15, 15), (19, 15), (21, 15), (0, 16), (21, 16), (0, 17), (3, 17), (5, 17),
(7, 17),(9, 17), (11, 17), (14, 17), (15, 17), (17, 17), (18, 17), (21, 17),
(2, 18), (3, 18), (5, 18), (7, 18),(9, 18), (11, 18), (14, 18), (17, 18),
(18, 18), (3, 19), (5, 19), (7, 19), (9, 19), (11, 19), (12, 19), (14, 19),
(17, 19), (18, 19), (0, 21), (1, 21), (2, 21), (5, 21), (6, 21), (9, 21),
(10, 21), (11, 21), (12, 21), (15, 21), (16, 21), (18, 21), (19, 21), (21, 21)]
walls = [(10, 0), (0, 12), (21, 12), (14, 21)]
park = [(14, 0), (15, 0), (16, 0)]
robotPos = (21, 12)
view = Canvas(window, width=x * width, height=y * width)
view.grid(row=0, column=0)
searchMapButton = Button(window,text = 'search')
searchMapButton.grid(row = 0,column = 1)
robotView = Canvas(window,width=x * width, height=y * width)
robotView.grid(row = 0,column = 2)
def formatColor(r, g, b):
return '#%02x%02x%02x' % (int(r * 255), int(g * 255), int(b * 255))
def cityMap():
global width, x, y, buidings,walls,park,robot
for i in range(x):
for j in range(y):
view.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='white', outline='gray', width=1)
for (i, j) in buidings:
view.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', outline='gray', width=1)
for (i,j) in walls:
view.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='blue', outline='gray', width=1)
for (i,j) in park:
view.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='red', outline='gray', width=1)
def robotCityMap():
global width, x, y, buidings,walls,park,robot,robotPos
for i in range(x):
for j in range(y):
robotView.create_rectangle(
i * width, j * width, (i + 1) * width, (j + 1) * width, fill='black', width=1)
robotView.create_rectangle(
robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)
# Create City Map
cityMap()
# Create Robot View
robotCityMap()
# Create a robot
robot = view.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,
robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")
robotSelf = robotView.create_rectangle(robotPos[0] * width + width * 2 / 10, robotPos[1] * width + width * 2 / 10,
robotPos[0] * width + width * 8 / 10, robotPos[1] * width + width * 8 / 10, fill="orange", width=1, tag="robot")
visited = [robotPos]
def move(dx,dy):
global robot,x,y,robotPos,robotSelf,view
global totalsteps
totalsteps = totalsteps + 1
newX = robotPos[0] + dx
newY = robotPos[1] + dy
if (not isEdge(newX, newY)) and (not isBlock(newX, newY)):
#print "move %d" % totalsteps
view.coords(robot, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,
(newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)
robotView.coords(robotSelf, (newX) * width + width * 2 / 10, (newY) * width + width * 2 / 10,
(newX) * width + width * 8 / 10, (newY) * width + width * 8 / 10)
robotPos = (newX, newY)
if robotPos not in visited:
visited.append(robotPos)
visitedPanel = robotView.create_rectangle(
robotPos[0] * width, robotPos[1] * width, (robotPos[0] + 1) * width, (robotPos[1] + 1) * width, fill='white', outline='gray', width=1)
robotView.tag_lower(visitedPanel,robotSelf)
else:
print "move error"
def callUp(event):
move(0,-1)
def callDown(event):
move(0, 1)
def callLeft(event):
move(-1, 0)
def callRight(event):
move(1, 0)
def isBlock(newX,newY):
global buidings,x,y
for (i,j) in buidings:
if (i == newX) and (j == newY):
return True
return False
def isEdge(newX,newY):
global x,y
if newX >= x or newY >= y or newX < 0 or newY < 0 :
return True
return False
def getSuccessors(robotPos):
n = Directions.NORTH
w = Directions.WEST
s = Directions.SOUTH
e = Directions.EAST
successors = []
posX = robotPos[0]
posY = robotPos[1]
if not isBlock(posX - 1, posY) and not isEdge(posX - 1,posY):
successors.append(w)
if not isBlock(posX, posY + 1) and not isEdge(posX,posY + 1):
successors.append(s)
if not isBlock(posX + 1, posY) and not isEdge(posX + 1,posY):
successors.append(e)
if not isBlock(posX, posY -1) and not isEdge(posX,posY - 1):
successors.append(n)
return successors
def getNewPostion(position,action):
posX = position[0]
posY = position[1]
n = Directions.NORTH
w = Directions.WEST
s = Directions.SOUTH
e = Directions.EAST
if action == n:
return (posX,posY - 1)
elif action == w:
return (posX - 1,posY)
elif action == s:
return (posX,posY + 1)
elif action == e:
return (posX + 1,posY)
delay = False
def runAction(actions):
global delay
n = Directions.NORTH
w = Directions.WEST
s = Directions.SOUTH
e = Directions.EAST
for i in actions:
if delay:
time.sleep(0.05)
if i == n:
#print "North"
move(0, -1)
elif i == w:
#print "West"
move(-1, 0)
elif i == s:
#print "South"
move(0, 1)
elif i == e:
#sprint "East"
move(1, 0)
view.update()
def searchMapTest(event):
global robotPos
actions = []
position = robotPos
for i in range(100):
successors = getSuccessors(position)
successor = successors[randint(0, len(successors) - 1)]
actions.append(successor)
position = getNewPostion(position, successor)
print actions
runAction(actions)
def reverseSuccessor(successor):
n = Directions.NORTH
w = Directions.WEST
s = Directions.SOUTH
e = Directions.EAST
if successor == n:
return s
elif successor == w:
return e
elif successor == s:
return n
elif successor == e:
return w
roads = set()
detectedBuildings = {}
blockColors = {}
blockIndex = 0
def updateBuildings(detectedBuildings):
global robotView,width
for block,buildings in detectedBuildings.items():
color = blockColors[block]
for building in buildings:
robotView.create_rectangle(
building[0] * width, building[1] * width, (building[0] + 1) * width, (building[1] + 1) * width, fill=color, outline=color, width=1)
def addBuilding(position):
global blockIndex,detectedBuildings
isAdd = False
addBlock = ''
for block,buildings in detectedBuildings.items():
for building in buildings:
if building == position:
return
if util.manhattanDistance(position, building) == 1:
if not isAdd:
buildings.add(position)
isAdd = True
addBlock = block
break
else:
#merge two block
for building in detectedBuildings[block]:
detectedBuildings[addBlock].add(building)
detectedBuildings.pop(block)
if not isAdd:
newBlock = set([position])
blockIndex = blockIndex + 1
detectedBuildings['Block %d' % blockIndex] = newBlock
color = formatColor(random(), random(), random())
blockColors['Block %d' % blockIndex] = color
updateBuildings(detectedBuildings)
def addRoad(position):
global robotView,width,robotSelf
visitedPanel = robotView.create_rectangle(
position[0] * width, position[1] * width, (position[0] + 1) * width, (position[1] + 1) * width, fill='white', outline='gray', width=1)
robotView.tag_lower(visitedPanel,robotSelf)
def showPath(positionA,positionB,path):
global robotView,width,view
view.create_oval(positionA[0] * width + width * 3 / 10, positionA[1] * width + width * 3 / 10,
positionA[0] * width + width * 7 / 10, positionA[1] * width + width * 7 / 10, fill='yellow', width=1)
nextPosition = positionA
for action in path:
nextPosition = getNewPostion(nextPosition, action)
view.create_oval(nextPosition[0] * width + width * 4 / 10, nextPosition[1] * width + width * 4 / 10,
nextPosition[0] * width + width * 6 / 10, nextPosition[1] * width + width * 6 / 10, fill='yellow', width=1)
view.create_oval(positionB[0] * width + width * 3 / 10, positionB[1] * width + width * 3 / 10,
positionB[0] * width + width * 7 / 10, positionB[1] * width + width * 7 / 10, fill='yellow', width=1)
hasDetected = set()
def detectLocation(position):
if position not in hasDetected:
hasDetected.add(position)
if isBlock(position[0],position[1]):
addBuilding(position)
elif not isEdge(position[0],position[1]):
addRoad(position)
def detect(position):
posX = position[0]
posY = position[1]
detectLocation((posX,posY + 1))
detectLocation((posX,posY - 1))
detectLocation((posX + 1,posY))
detectLocation((posX - 1,posY))
def heuristic(positionA,positionB):
return util.manhattanDistance(positionA,positionB)
def AstarSearch(positionA,positionB):
"Step 1: define closed: a set"
closed = set()
"Step 2: define fringe: a PriorityQueue "
fringe = util.PriorityQueue()
"Step 3: insert initial node to fringe"
"Construct node to be a tuple (location,actions)"
initialNode = (positionA,[])
initCost = 0 + heuristic(initialNode[0],positionB)
fringe.push(initialNode,initCost)
"Step 4: Loop to do search"
while not fringe.isEmpty():
node = fringe.pop()
if node[0] == positionB:
return node[1]
if node[0] not in closed:
closed.add(node[0])
for successor in getSuccessors(node[0]):
actions = list(node[1])
actions.append(successor)
newPosition = getNewPostion(node[0], successor)
childNode = (newPosition,actions)
cost = len(actions) + heuristic(childNode[0],positionB)
fringe.push(childNode,cost)
return []
def AstarSearchBetweenbuildings(building1,building2):
"Step 1: define closed: a set"
closed = set()
"Step 2: define fringe: a PriorityQueue "
fringe = util.PriorityQueue()
"Step 3: insert initial node to fringe"
"Construct node to be a tuple (location,actions)"
initialNode = (building1,[])
initCost = 0 + heuristic(initialNode[0],building2)
fringe.push(initialNode,initCost)
"Step 4: Loop to do search"
while not fringe.isEmpty():
node = fringe.pop()
if util.manhattanDistance(node[0],building2) == 1:
return node[1]
if node[0] not in closed:
closed.add(node[0])
for successor in getSuccessors(node[0]):
actions = list(node[1])
actions.append(successor)
newPosition = getNewPostion(node[0], successor)
childNode = (newPosition,actions)
cost = len(actions) + heuristic(childNode[0],building2)
fringe.push(childNode,cost)
return []
def calculatePositions(buildingA,path):
positions = set()
positions.add(buildingA)
nextPosition = buildingA
for action in path:
nextPosition = getNewPostion(nextPosition, action)
positions.add(nextPosition)
return positions
def showRoad(fullRoad):
global view,width
for road in fullRoad:
view.create_oval(road[0] * width + width * 4 / 10, road[1] * width + width * 4 / 10,
road[0] * width + width * 6 / 10, road[1] * width + width * 6 / 10, fill='yellow', width=1)
view.update()
def search(node):
successors = getSuccessors(node[0])
detect(node[0])
for successor in successors:
nextPosition = getNewPostion(node[0], successor)
if nextPosition not in roads:
runAction([successor]) # to the next node
roads.add(nextPosition)
search((nextPosition,[successor],[reverseSuccessor(successor)]))
runAction(node[2]) #back to top node
def searchConsiderTopVisit(node,topWillVisit):
successors = getSuccessors(node[0])
detect(node[0])
newTopWillVisit = set(topWillVisit)
for successor in successors:
nextPosition = getNewPostion(node[0], successor)
newTopWillVisit.add(nextPosition)
for successor in successors:
nextPosition = getNewPostion(node[0], successor)
if nextPosition not in roads and nextPosition not in topWillVisit:
runAction([successor]) # to the next node
roads.add(nextPosition)
newTopWillVisit.remove(nextPosition)
searchConsiderTopVisit((nextPosition,[successor],[reverseSuccessor(successor)]),newTopWillVisit)
runAction(node[2]) #back to top node
def searchShortestPathBetweenBlocks(block1,block2):
shortestPath = []
buildingA = (0,0)
buildingB = (0,0)
for building1 in block1:
for building2 in block2:
path = AstarSearchBetweenbuildings(building1, building2)
if len(shortestPath) == 0:
shortestPath = path
buildingA = building1
buildingB = building2
elif len(path) < len(shortestPath):
shortestPath = path
buildingA = building1
buildingB = building2
return (buildingA,buildingB,shortestPath)
def addBuildingToBlocks(linkedBlock,buildingA):
global detectedBuildings
newLinkedBlock = linkedBlock.copy()
for block,buildings in detectedBuildings.items():
for building in buildings:
if util.manhattanDistance(buildingA, building) == 1:
newLinkedBlock[block] = buildings
break
return newLinkedBlock
def bfsSearchNextBlock(initBuilding,linkedBlock):
global detectedBuildings
closed = set()
fringe = util.Queue()
initNode = (initBuilding,[])
fringe.push(initNode)
while not fringe.isEmpty():
node = fringe.pop()
newLinkedBlock = addBuildingToBlocks(linkedBlock,node[0])
if len(newLinkedBlock) == len(detectedBuildings):
return node[1]
if len(newLinkedBlock) > len(linkedBlock): # find a new block
actions = list(node[1])
'''
if len(node[1]) > 0:
lastAction = node[1][len(node[1]) - 1]
for successor in getSuccessors(node[0]):
if successor == lastAction:
nextPosition = getNewPostion(node[0], successor)
actions.append(successor)
return actions + bfsSearchNextBlock(nextPosition, newLinkedBlock)
'''
return node[1] + bfsSearchNextBlock(node[0], newLinkedBlock)
if node[0] not in closed:
closed.add(node[0])
for successor in getSuccessors(node[0]):
actions = list(node[1])
actions.append(successor)
nextPosition = getNewPostion(node[0], successor)
childNode = (nextPosition,actions)
fringe.push(childNode)
return []
def isGoal(node):
global detectedBuildings,robotPos
linkedBlock = {}
positions = calculatePositions(robotPos, node[1])
for position in positions:
for block,buildings in detectedBuildings.items():
for building in buildings:
if util.manhattanDistance(position, building) == 1:
linkedBlock[block] = buildings
print len(linkedBlock)
if len(linkedBlock) == 17:
return True
else:
return False
def roadHeuristic(road):
return 0
def AstarSearchRoad():
global robotPos,detectedBuildings
"Step 1: define closed: a set"
closed = set()
"Step 2: define fringe: a PriorityQueue "
fringe = util.PriorityQueue()
"Step 3: insert initial node to fringe"
"Construct node to be a tuple (location,actions)"
initRoad = (robotPos,[])
initCost = 0 + roadHeuristic(initRoad)
fringe.push(initRoad,initCost)
"Step 4: Loop to do search"
while not fringe.isEmpty():
node = fringe.pop()
if isGoal(node):
print len(closed)
return node[1]
if node[0] not in closed:
closed.add(node[0])
for successor in getSuccessors(node[0]):
actions = list(node[1])
actions.append(successor)
newPosition = getNewPostion(node[0], successor)
childNode = (newPosition,actions)
cost = len(actions) + roadHeuristic(childNode)
fringe.push(childNode,cost)
return []
def searchRoad(building):
global detectedBuildings,robotPos
linkedBlock = {}
initBuilding = building
return bfsSearchNextBlock(initBuilding,linkedBlock)
def searchShortestRoad():
shortestRoad = []
shortestPositions = set()
for block,buildings in detectedBuildings.items():
for building in buildings:
road = searchRoad(building)
positions = calculatePositions(building, road)
if len(shortestPositions) == 0 or len(positions) < len(shortestPositions):
shortestRoad = road
shortestPositions = positions
print len(shortestPositions)
showRoad(shortestPositions)
def searchMap(event):
print "Search Map"
global robotPos,roads,detectedBuildings,delay
actions = []
#roads = set()s
#roads.add(robotPos)
#fringe = util.Stack()
initNode = (robotPos,[],[]) # (position,forwardActions,backwarsdActions)
#fringe.push(initNode)
roads.add(robotPos)
search(initNode)
#searchConsiderTopVisit(initNode, set())
print detectedBuildings
print len(detectedBuildings)
#path = AstarSearchBetweenbuildings((6,21), (2, 18))
#showPath((6,21),(2,18), path)
'''
shortestRoad = set()
for block1 in detectedBuildings.values():
roads = set()
for block2 in detectedBuildings.values():
if not block1 == block2:
(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)
#showPath(buildingA,buildingB,path)
positions = calculatePositions(buildingA,buildingB,path)
roads = roads | positions
if len(shortestRoad) == 0 or len(roads) < len(shortestRoad):
shortestRoad = roads
print len(shortestRoad)
showRoad(shortestRoad)
'''
'''
block1 = detectedBuildings.values()[3]
print block1
block2 = detectedBuildings.values()[5]
print block2
(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)
print buildingA,buildingB,path
showPath(buildingA,buildingB,path)
block1 = detectedBuildings.values()[10]
print block1
block2 = detectedBuildings.values()[20]
print block2
(buildingA,buildingB,path) = searchShortestPathBetweenBlocks(block1, block2)
print buildingA,buildingB,path
showPath(buildingA,buildingB,path)
'''
searchShortestRoad()
'''
path = searchRoad()
#path = AstarSearchRoad()
positions = calculatePositions(robotPos, path)
print len(positions)
showRoad(positions)
delay = True
#runAction(path)
'''
window.bind("<Up>", callUp)
window.bind("<Down>", callDown)
window.bind("<Right>", callRight)
window.bind("<Left>", callLeft)
window.bind("s", searchMap)
searchMapButton.bind("<Button-1>",searchMap)
window.mainloop()
下面的util.py使用的是加州伯克利的代码:
# util.py
# -------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
import sys
import inspect
import heapq, random
"""
Data structures useful for implementing SearchAgents
"""
class Stack:
"A container with a last-in-first-out (LIFO) queuing policy."
def __init__(self):
self.list = []
def push(self,item):
"Push 'item' onto the stack"
self.list.append(item)
def pop(self):
"Pop the most recently pushed item from the stack"
return self.list.pop()
def isEmpty(self):
"Returns true if the stack is empty"
return len(self.list) == 0
class Queue:
"A container with a first-in-first-out (FIFO) queuing policy."
def __init__(self):
self.list = []
def push(self,item):
"Enqueue the 'item' into the queue"
self.list.insert(0,item)
def pop(self):
"""
Dequeue the earliest enqueued item still in the queue. This
operation removes the item from the queue.
"""
return self.list.pop()
def isEmpty(self):
"Returns true if the queue is empty"
return len(self.list) == 0
class PriorityQueue:
"""
Implements a priority queue data structure. Each inserted item
has a priority associated with it and the client is usually interested
in quick retrieval of the lowest-priority item in the queue. This
data structure allows O(1) access to the lowest-priority item.
Note that this PriorityQueue does not allow you to change the priority
of an item. However, you may insert the same item multiple times with
different priorities.
"""
def __init__(self):
self.heap = []
self.count = 0
def push(self, item, priority):
# FIXME: restored old behaviour to check against old results better
# FIXED: restored to stable behaviour
entry = (priority, self.count, item)
# entry = (priority, item)
heapq.heappush(self.heap, entry)
self.count += 1
def pop(self):
(_, _, item) = heapq.heappop(self.heap)
# (_, item) = heapq.heappop(self.heap)
return item
def isEmpty(self):
return len(self.heap) == 0
class PriorityQueueWithFunction(PriorityQueue):
"""
Implements a priority queue with the same push/pop signature of the
Queue and the Stack classes. This is designed for drop-in replacement for
those two classes. The caller has to provide a priority function, which
extracts each item's priority.
"""
def __init__(self, priorityFunction):
"priorityFunction (item) -> priority"
self.priorityFunction = priorityFunction # store the priority function
PriorityQueue.__init__(self) # super-class initializer
def push(self, item):
"Adds an item to the queue with priority from the priority function"
PriorityQueue.push(self, item, self.priorityFunction(item))
def manhattanDistance( xy1, xy2 ):
"Returns the Manhattan distance between points xy1 and xy2"
return abs( xy1[0] - xy2[0] ) + abs( xy1[1] - xy2[1] )
来源:http://blog.csdn.net/songrotek/article/details/48023301


猜你喜欢
- python模拟登陆网页主要使用到urllib、urllib2、cookielib及BeautifulSoup等基本模块,当然进阶阶段我们还
- 下面是用python写的,使用lxml来做html分析,从网上看到的,说是分析速度最快的哦,不过没有验证过。好了,上代码。 import u
- 在用pyinstaller打包后不想要后面的终端命令框,但是打包时加了-w或者--noconsole命令后会导致cmd程序不能运行从而出错。
- --利用T-SQL语句,实现数据库的备份与还原的功能 ----体现了SQL Server中的四个知识点: ----1. 获取SQL Serv
- 封装数据库操作,并且提供事务处理。 使用DbProviderFactories的数据库操作类 Imports System.Data Imp
- 一行拆分成多行1.根据某一列拆分效果:代码:if __name__ == '__main__':
- 1. 在控制台输入以下命令,检查Jupyter notebook的安装目录jupyter notebook --generate-confi
- 因公司服务器上部署应用较多,在有大并发访问、业务逻辑有问题的情况下反复互相调用或者有异常流量访问的时候,需要对业务应用进行故障定位,所以利用
- 一、提出问题利用SQL,从右到左查找某一字符串中匹配的查询串的第一个索引位置。比如有一字段ProductName值格式如下:短袖印花T恤 M
- Python获取当前时间_获取格式化时间:Python获取当前时间:使用 time.time( ) 获取到距离1970年1月1日的秒数(浮点
- 本文示例可见一斑了,主要是通过Java对SQL语句进行操作,和普通的增删改查的原理是一样的:import java.sql.*; publi
- 用户习惯大家都经常在提,习惯源于何出?回答可以是软件的用户习惯源于其不断使用过程中的印象积累。如果是这个软件刚诞生的时候呢?于是就得参考同类
- 本文以一个简单的实例讲述了python实现斐波那契数列数列递归函数的方法,代码精简易懂。分享给大家供大家参考之用。主要函数代码如下:def
- 用window.open打开的窗口中,有时候session变量会丢掉,给asp编程带来的一定的麻烦。用参数传递解决它:<DIV&nbs
- 目录一、基本使用与逻辑二、特性三、错误对象四、较好的catch和throw策略五、Promise的错误处理六、性能损耗一、基本使用与逻辑使用
- 前言Python爬虫要经历爬虫、爬虫被限制、爬虫反限制的过程。当然后续还要网页爬虫限制优化,爬虫再反限制的一系列道高一尺魔高一丈的过程。爬虫
- 当你使用UPDATE, INSERT, DELETE语句更新数据的时候,你就改变了两个地方的数据:log buffer和data buffe
- 前几天写了一个ajax的,总感觉代码比较多,今天晚上又得写了一下,感觉代码还是比较多,但还好的是,比较通用。谁有办法优化一下当然好。&nbs
- 一、查询当前部门下的所有子部门WITH dept AS ( SELECT *
- 目录快速使用模式总结今天学个简单点的😀,termtables处理表格形式数据的输出。适用于随时随地的输出一些状态或统计数据,便于观察和调试。