TensorFlow绘制loss/accuracy曲线的实例
作者:The_Thinker_QChen 发布时间:2022-01-25 08:01:16
标签:TensorFlow,loss,accuracy,曲线
1. 多曲线
1.1 使用pyplot方式
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(1, 11, 1)
plt.plot(x, x * 2, label="First")
plt.plot(x, x * 3, label="Second")
plt.plot(x, x * 4, label="Third")
plt.legend(loc=0, ncol=1) # 参数:loc设置显示的位置,0是自适应;ncol设置显示的列数
plt.show()
1.2 使用面向对象方式
import numpy as np
import matplotlib.pyplot as plt
x = np.arange(1, 11, 1)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, x * 2, label="First")
ax.plot(x, x * 3, label="Second")
ax.legend(loc=0)
# ax.plot(x, x * 2)
# ax.legend([”Demo“], loc=0)
plt.show()
2. 双y轴曲线
双y轴曲线图例合并是一个棘手的操作,现以MNIST案例中loss/accuracy绘制曲线。
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
import time
import matplotlib.pyplot as plt
import numpy as np
x_data = tf.placeholder(tf.float32, [None, 784])
y_data = tf.placeholder(tf.float32, [None, 10])
x_image = tf.reshape(x_data, [-1, 28, 28, 1])
# convolve layer 1
filter1 = tf.Variable(tf.truncated_normal([5, 5, 1, 6]))
bias1 = tf.Variable(tf.truncated_normal([6]))
conv1 = tf.nn.conv2d(x_image, filter1, strides=[1, 1, 1, 1], padding='SAME')
h_conv1 = tf.nn.sigmoid(conv1 + bias1)
maxPool2 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# convolve layer 2
filter2 = tf.Variable(tf.truncated_normal([5, 5, 6, 16]))
bias2 = tf.Variable(tf.truncated_normal([16]))
conv2 = tf.nn.conv2d(maxPool2, filter2, strides=[1, 1, 1, 1], padding='SAME')
h_conv2 = tf.nn.sigmoid(conv2 + bias2)
maxPool3 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# convolve layer 3
filter3 = tf.Variable(tf.truncated_normal([5, 5, 16, 120]))
bias3 = tf.Variable(tf.truncated_normal([120]))
conv3 = tf.nn.conv2d(maxPool3, filter3, strides=[1, 1, 1, 1], padding='SAME')
h_conv3 = tf.nn.sigmoid(conv3 + bias3)
# full connection layer 1
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 120, 80]))
b_fc1 = tf.Variable(tf.truncated_normal([80]))
h_pool2_flat = tf.reshape(h_conv3, [-1, 7 * 7 * 120])
h_fc1 = tf.nn.sigmoid(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# full connection layer 2
W_fc2 = tf.Variable(tf.truncated_normal([80, 10]))
b_fc2 = tf.Variable(tf.truncated_normal([10]))
y_model = tf.nn.softmax(tf.matmul(h_fc1, W_fc2) + b_fc2)
cross_entropy = - tf.reduce_sum(y_data * tf.log(y_model))
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)
sess = tf.InteractiveSession()
correct_prediction = tf.equal(tf.argmax(y_data, 1), tf.argmax(y_model, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.global_variables_initializer())
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
fig_loss = np.zeros([1000])
fig_accuracy = np.zeros([1000])
start_time = time.time()
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(200)
if i % 100 == 0:
train_accuracy = sess.run(accuracy, feed_dict={x_data: batch_xs, y_data: batch_ys})
print("step %d, train accuracy %g" % (i, train_accuracy))
end_time = time.time()
print("time:", (end_time - start_time))
start_time = end_time
print("********************************")
train_step.run(feed_dict={x_data: batch_xs, y_data: batch_ys})
fig_loss[i] = sess.run(cross_entropy, feed_dict={x_data: batch_xs, y_data: batch_ys})
fig_accuracy[i] = sess.run(accuracy, feed_dict={x_data: batch_xs, y_data: batch_ys})
print("test accuracy %g" % sess.run(accuracy, feed_dict={x_data: mnist.test.images, y_data: mnist.test.labels}))
# 绘制曲线
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
lns1 = ax1.plot(np.arange(1000), fig_loss, label="Loss")
# 按一定间隔显示实现方法
# ax2.plot(200 * np.arange(len(fig_accuracy)), fig_accuracy, 'r')
lns2 = ax2.plot(np.arange(1000), fig_accuracy, 'r', label="Accuracy")
ax1.set_xlabel('iteration')
ax1.set_ylabel('training loss')
ax2.set_ylabel('training accuracy')
# 合并图例
lns = lns1 + lns2
labels = ["Loss", "Accuracy"]
# labels = [l.get_label() for l in lns]
plt.legend(lns, labels, loc=7)
plt.show()
注:数据集保存在MNIST_data文件夹下
其实就是三步:
1)分别定义loss/accuracy一维数组
fig_loss = np.zeros([1000])
fig_accuracy = np.zeros([1000])
# 按间隔定义方式:fig_accuracy = np.zeros(int(np.ceil(iteration / interval)))
2)填充真实数据
fig_loss[i] = sess.run(cross_entropy, feed_dict={x_data: batch_xs, y_data: batch_ys})
fig_accuracy[i] = sess.run(accuracy, feed_dict={x_data: batch_xs, y_data: batch_ys})
3)绘制曲线
fig, ax1 = plt.subplots()
ax2 = ax1.twinx()
lns1 = ax1.plot(np.arange(1000), fig_loss, label="Loss")
# 按一定间隔显示实现方法
# ax2.plot(200 * np.arange(len(fig_accuracy)), fig_accuracy, 'r')
lns2 = ax2.plot(np.arange(1000), fig_accuracy, 'r', label="Accuracy")
ax1.set_xlabel('iteration')
ax1.set_ylabel('training loss')
ax2.set_ylabel('training accuracy')
# 合并图例
lns = lns1 + lns2
labels = ["Loss", "Accuracy"]
# labels = [l.get_label() for l in lns]
plt.legend(lns, labels, loc=7)
来源:https://blog.csdn.net/qq_33254870/article/details/81536188
0
投稿
猜你喜欢
- 一、什么是NumPyNumpy--Numerical Python,是一个基于Python的可以存储和处理大型矩阵的库。几乎是Python
- 如下所示:import numpy as npimport pandas as pdfrom pandas import Series,Da
- 新建一个Spring Initializr项目2.把pom.xml文件中的oracle依赖换成自己的oracle版本依赖:原来的:现在的:
- Array(数组)内部机制在 Go 语言中数组是固定长度的数据类型,它包含相同类型的连续的元素,这些元素可以是内建类型,像数字和字符串,也可
- 第一步:下载一个JDBC驱动包,例如我用的是:mysql-connector-java-5.1.17-bin.jar第二步:导入下载的JDB
- 今天有一位同学给了我一个excel文件,要求读取某些行,某些列,然后我试着做了一个demo,这里分享出来,希望能帮到大家:首先安装xlrd:
- 阅读上一篇:javascript面向对象编程(二) [Interface,Class.implement 接口及实现]接口规定了一些方法,如
- GeoPandas是一个基于pandas,针对地理数据做了特别支持的第三方模块。它继承pandas.Series和pandas.Datafr
- 本文实例讲述了python基于windows平台锁定键盘输入的方法。分享给大家供大家参考。具体分析如下:pywin32中没有BlockInp
- CASE 表达式分为简单表达式与搜索表达式,其中搜索表达式可以覆盖简单表达式的全部能力,我也建议只写搜索表达式,而不要写简单表达式。简单表达
- golang支持两种随机数生成方式:math/rand // 伪随机cr
- 一、协程介绍协程:英文名Coroutine,是单线程下的并发,又称微线程,纤程。协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度
- 阅读器访问地址:http://easyrss.tk/,欢迎体验!阅读导览一、 概述 二、 设计的基本概念和原理 三、 设计方案四、 主要源代
- tkinter提供了三个模块,可以创建弹出对话窗口:(使用必须单独导入模块)1.messagebox消息对话框示例:askokcanceli
- 一、起源 因子分析的起源是这样的:1904年英
- 我是闲的没事干,2014过的太浮夸了,博客也没写几篇,哎~~~ 用这篇来记录即将逝去的2014python对各种数据库的各种操作满大街都是,
- 在计算机和信息技术领域里 I/O 这个术语表示输入 / 输出 ( 英语:Input / Output ) ,通常指数据在存储器(内部和外部)
- 问题定义一个int型的一维数组,包含10个元素,分别赋值为1~10, 然后将数组中的元素都向前移一个位置,即,a[0]=a[1],a[1]=
- 前言延迟队列是一个非常有用的工具,我们经常遇到需要使用延迟队列的场景,比如延迟通知,订单关闭等等。这篇文章主要是使用Go+Kafka实现延迟
- 实训课期间忙里偷闲的学习了python的selenium包,唯一一点不好是要自己去查英文文档,明摆着欺负我这种英语不好的,想着用谷歌翻译一下