opencv python 傅里叶变换的使用
作者:sakurala 发布时间:2022-07-27 14:55:03
理论
傅立叶变换用于分析各种滤波器的频率特性,对于图像,2D离散傅里叶变换(DFT)用于找到频域.快速傅里叶变换(FFT)的快速算法用于计算DFT.
于一个正弦信号,x(t)=Asin(2πft),我们可以说 f 是信号的频率,如果它的频率域被接受,我们可以看到 f 的峰值.如果信号被采样来形成一个离散信号,我们得到相同的频率域,但是在[−π,π] or [0,2π]范围内是周期性的 (or [0,N] for N-point DFT).
可以将图像视为在两个方向上采样的信号.因此,在X和Y方向上进行傅里叶变换可以得到图像的频率表示.
更直观的是,对于正弦信号,如果振幅在短时间内变化得非常快,你可以说它是一个高频信号.如果它变化缓慢,它是一个低频信号,可以把同样的想法扩展到图片上,边和噪声是图像中的高频内容,如果振幅没有很大的变化,那就是低频分量.
Numpy中的傅里叶变换
np.fft.fft2()
第一个参数是输入图像,它是灰度图像
第二个参数是可选的,它决定了输出数组的大小,如果它大于输入图像的大小,则输入图像在计算FFT之前填充了0.如果它小于输入图像,输入图像将被裁剪,如果没有参数传递,输出数组的大小将与输入相同.
一旦得到结果,零频率分量(DC分量)将位于左上角。 如果要将其置于中心位置,则需要在两个方向上将结果移动N2.np.fft.fftshift()
,一旦你找到频率变换,你就能找到大小谱.
代码:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('img.jpg',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
可以在中心看到更多的白色区域,表示低频率的内容更多.
现在可以在频域做一些运算,比如高通滤波和重建图像也就是找到逆DFT,只需用一个矩形窗口大小的60x60来移除低频部分,使用np.fft.ifftshift()
应用反向移动,使DC组件再次出现在左上角,然后使用np.ifft2()
函数找到反FFT,结果将会是一个复数,可以取它的绝对值.
代码:
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('img.jpg',0)
f = np.fft.fft2(img)
fshift = np.fft.fftshift(f)
magnitude_spectrum = 20*np.log(np.abs(fshift))
rows, cols = img.shape
crow,ccol = int(rows/2) , int(cols/2)
fshift[crow-30:crow+30, ccol-30:ccol+30] = 0
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)
plt.subplot(221),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(222),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.subplot(223),plt.imshow(img_back)
plt.title('Result in JET'), plt.xticks([]), plt.yticks([])
plt.subplot(224),plt.imshow(img_back, cmap = 'gray')
plt.title('Image after HPF'), plt.xticks([]), plt.yticks([])
plt.show()
结果表明,高通滤波是一种边缘检测操作.
OpenCV中的傅里叶变换
OpenCV提供了cv.dft()
和cv.idft()
函数.它返回与前面相同的结果,但是有两个通道.第一个通道将会有结果的实部,第二个通道将会有一个虚部.
输入图像首先应该转换为np.float32
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('img.jpg',0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
也可以使用cv.cartToPolar()
,它可以在一次拍摄中同时返回大小和相位.
现在我们要做的是逆DFT.这次我们将移除图像中的高频内容,即我们将LPF应用到图像中.它实际上模糊了图像.为此,我们先创建一个具有高值(1)低频率的掩模,即我们通过低频内容,而在高频区域则是0。
import cv2
import numpy as np
from matplotlib import pyplot as plt
img = cv2.imread('img.jpg',0)
dft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
rows, cols = img.shape
crow,ccol = int(rows/2) , int(cols/2)
# create a mask first, center square is 1, remaining all zeros
mask = np.zeros((rows,cols,2),np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1
# apply mask and inverse DFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])
plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()
NOTE:
OpenCV函数cv.dft()
和cv.idft()
比Numpy函数更快.但是Numpy功能更加用户友好.
Fourier Transform
来源:https://segmentfault.com/a/1190000015679127
猜你喜欢
- 表分区是最近才知道的哦 ,以前自己做都是分表来实现上亿级别的数据了,下面我来给大家介绍一下mysql表分区创建与使用吧,希望对各位同学会有所
- 1、使用mysqli扩展库 预处理技术 mysqli stmt 向数据库添加3个用户<?php /
- 本文实例讲述了Python3模拟登录操作。分享给大家供大家参考,具体如下:模拟登录_要求:1. 用户输入账号密码进行登录2. 用户信息保存在
- 写在前面今天在公司写了一段代码,判断一个变量是否为空值,由于判断的类型太少,code review的时候同事说还有很多类型没有考虑到,并且提
- cmd中输入net start mysql 提示:服务名无效请进入MySQL的bin目录,并在bin目录打开命令行窗口,或设置系统环境变量,
- 给定一篇英语文章,要求统计出所有单词的个数,并按一定次序输出。思路是利用go语言的map类型,以每个单词作为关键字存储数量信息,代码实现如下
- Navicat是一套快速、可靠的数据库管理工具,专为简化数据库的管理及降低系统管理成本而设。它的设计符合数据库管理员、开发人员及中小企业的需
- 1、、软件环境:Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-32-generic x86_64)MySQL 5
- 前言前面我们已经介绍了 python面向对象入门教程之从代码复用开始(一) ,这篇文章主要介绍的是关于Python面向对象之设置对
- 1、Pandas库的操作Panda是数据分析特别重要的一个库,我们要掌握以下三点:· pandas 分组计算;· pandas 索引与多重索
- 前几天,Opera宣布其用户已经超过1亿——桌面版和手机版均超过5000万。Opera Mini是一个很优秀的手机浏览器,对手机用户而言,O
- Kafka 样式的 soap 端点Christopher Dix 所开发的“Kafka — XSL SOAP 工具箱”(请参阅 参考资料)是
- 前几天安装Python的时候没有装上pip工具,所以只能现在手动安装了。首先,访问https://bootstrap.pypa.io/get
- 这里列出了13种实现图片或网页内容 lightbox 效果的方法,大部分是链接到各种lightbox作者的英文页面,里面都有源代码下载。Th
- 分析我们都知道一个可迭代对象可以通过iter()可以返回一个迭代器。如果想要一个对象称为可迭代对象,即可以使用for,那么必须实现__ite
- 以前写过一个标签效果,外观虽然好看,但代码不太规范,实现的方法比较繁冗。需要注意的是标签的背景图,两种状态,激活的标签背景为蓝色,反之为灰色
- 这篇文章主要介绍了如何获取Python简单for循环索引,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的
- 本文实例讲述了Python实现的json文件读取及中文乱码显示问题解决方法。分享给大家供大家参考,具体如下:city.json文件的内容如下
- 如下所示:select name from mysql.proc where db='数据库名';或者select rout
- 方法一: 在给出的输入CD-KEY(序列号)的界面中,输入你已经安装的windows server 2003 的CD-KEY(序列号)即可以