Python实现的最近最少使用算法
作者:Sephiroth 发布时间:2022-07-10 22:48:27
标签:Python,算法
本文实例讲述了Python实现的最近最少使用算法。分享给大家供大家参考。具体如下:
# lrucache.py -- a simple LRU (Least-Recently-Used) cache class
# Copyright 2004 Evan Prodromou <evan@bad.dynu.ca>
# Licensed under the Academic Free License 2.1
# Licensed for ftputil under the revised BSD license
# with permission by the author, Evan Prodromou. Many
# thanks, Evan! :-)
#
# The original file is available at
# http://pypi.python.org/pypi/lrucache/0.2 .
# arch-tag: LRU cache main module
"""a simple LRU (Least-Recently-Used) cache module
This module provides very simple LRU (Least-Recently-Used) cache
functionality.
An *in-memory cache* is useful for storing the results of an
'expe\nsive' process (one that takes a lot of time or resources) for
later re-use. Typical examples are accessing data from the filesystem,
a database, or a network location. If you know you'll need to re-read
the data again, it can help to keep it in a cache.
You *can* use a Python dictionary as a cache for some purposes.
However, if the results you're caching are large, or you have a lot of
possible results, this can be impractical memory-wise.
An *LRU cache*, on the other hand, only keeps _some_ of the results in
memory, which keeps you from overusing resources. The cache is bounded
by a maximum size; if you try to add more values to the cache, it will
automatically discard the values that you haven't read or written to
in the longest time. In other words, the least-recently-used items are
discarded. [1]_
.. [1]: 'Discarded' here means 'removed from the cache'.
"""
from __future__ import generators
import time
from heapq import heappush, heappop, heapify
# the suffix after the hyphen denotes modifications by the
# ftputil project with respect to the original version
__version__ = "0.2-1"
__all__ = ['CacheKeyError', 'LRUCache', 'DEFAULT_SIZE']
__docformat__ = 'reStructuredText en'
DEFAULT_SIZE = 16
"""Default size of a new LRUCache object, if no 'size' argument is given."""
class CacheKeyError(KeyError):
"""Error raised when cache requests fail
When a cache record is accessed which no longer exists (or never did),
this error is raised. To avoid it, you may want to check for the existence
of a cache record before reading or deleting it."""
pass
class LRUCache(object):
"""Least-Recently-Used (LRU) cache.
Instances of this class provide a least-recently-used (LRU) cache. They
emulate a Python mapping type. You can use an LRU cache more or less like
a Python dictionary, with the exception that objects you put into the
cache may be discarded before you take them out.
Some example usage::
cache = LRUCache(32) # new cache
cache['foo'] = get_file_contents('foo') # or whatever
if 'foo' in cache: # if it's still in cache...
# use cached version
contents = cache['foo']
else:
# recalculate
contents = get_file_contents('foo')
# store in cache for next time
cache['foo'] = contents
print cache.size # Maximum size
print len(cache) # 0 <= len(cache) <= cache.size
cache.size = 10 # Auto-shrink on size assignment
for i in range(50): # note: larger than cache size
cache[i] = i
if 0 not in cache: print 'Zero was discarded.'
if 42 in cache:
del cache[42] # Manual deletion
for j in cache: # iterate (in LRU order)
print j, cache[j] # iterator produces keys, not values
"""
class __Node(object):
"""Record of a cached value. Not for public consumption."""
def __init__(self, key, obj, timestamp, sort_key):
object.__init__(self)
self.key = key
self.obj = obj
self.atime = timestamp
self.mtime = self.atime
self._sort_key = sort_key
def __cmp__(self, other):
return cmp(self._sort_key, other._sort_key)
def __repr__(self):
return "<%s %s => %s (%s)>" % \
(self.__class__, self.key, self.obj, \
time.asctime(time.localtime(self.atime)))
def __init__(self, size=DEFAULT_SIZE):
# Check arguments
if size <= 0:
raise ValueError, size
elif type(size) is not type(0):
raise TypeError, size
object.__init__(self)
self.__heap = []
self.__dict = {}
"""Maximum size of the cache.
If more than 'size' elements are added to the cache,
the least-recently-used ones will be discarded."""
self.size = size
self.__counter = 0
def _sort_key(self):
"""Return a new integer value upon every call.
Cache nodes need a monotonically increasing time indicator.
time.time() and time.clock() don't guarantee this in a
platform-independent way.
"""
self.__counter += 1
return self.__counter
def __len__(self):
return len(self.__heap)
def __contains__(self, key):
return self.__dict.has_key(key)
def __setitem__(self, key, obj):
if self.__dict.has_key(key):
node = self.__dict[key]
# update node object in-place
node.obj = obj
node.atime = time.time()
node.mtime = node.atime
node._sort_key = self._sort_key()
heapify(self.__heap)
else:
# size may have been reset, so we loop
while len(self.__heap) >= self.size:
lru = heappop(self.__heap)
del self.__dict[lru.key]
node = self.__Node(key, obj, time.time(), self._sort_key())
self.__dict[key] = node
heappush(self.__heap, node)
def __getitem__(self, key):
if not self.__dict.has_key(key):
raise CacheKeyError(key)
else:
node = self.__dict[key]
# update node object in-place
node.atime = time.time()
node._sort_key = self._sort_key()
heapify(self.__heap)
return node.obj
def __delitem__(self, key):
if not self.__dict.has_key(key):
raise CacheKeyError(key)
else:
node = self.__dict[key]
del self.__dict[key]
self.__heap.remove(node)
heapify(self.__heap)
return node.obj
def __iter__(self):
copy = self.__heap[:]
while len(copy) > 0:
node = heappop(copy)
yield node.key
raise StopIteration
def __setattr__(self, name, value):
object.__setattr__(self, name, value)
# automagically shrink heap on resize
if name == 'size':
while len(self.__heap) > value:
lru = heappop(self.__heap)
del self.__dict[lru.key]
def __repr__(self):
return "<%s (%d elements)>" % (str(self.__class__), len(self.__heap))
def mtime(self, key):
"""Return the last modification time for the cache record with key.
May be useful for cache instances where the stored values can get
'stale', such as caching file or network resource contents."""
if not self.__dict.has_key(key):
raise CacheKeyError(key)
else:
node = self.__dict[key]
return node.mtime
if __name__ == "__main__":
cache = LRUCache(25)
print cache
for i in range(50):
cache[i] = str(i)
print cache
if 46 in cache:
print "46 in cache"
del cache[46]
print cache
cache.size = 10
print cache
cache[46] = '46'
print cache
print len(cache)
for c in cache:
print c
print cache
print cache.mtime(46)
for c in cache:
print c
希望本文所述对大家的Python程序设计有所帮助。


猜你喜欢
- 很多人喜欢把一个网站中相同的部分象是统一的页面logo,版权声明等做成一个过程,然后放到一个include文件中,这样所有的页面就都可以使用
- 论坛里面有不少人在使用Javascript编写Asp,经常有人在论坛提问,为什么Asp对象在对比指定值时返回结果不对?现在在这里给大家写点关
- 问题描述:想要去掉图像背景,只保留中心部分目标:1.利用ITK-SNAP制作二值化标签(即mask)2.利用软件ITK-SNAP把一幅图像中
- 1.下载python2.7.xwget https://www.python.org/ftp/python/2.7.6/Python-2.7
- 引言“ 这是MySQL系列笔记的第七篇,文章内容均为本人通过实践及查阅资料相关整理所得,可用作新手入门指南,或
- 最近在学python的过程中无意间发现一个python库:wxpy,其可以实现让微信自动接收、处理消息并进行回复的一系列功能。感觉挺有意思的
- 用python实现简单Server/Client文件传输:服务器端:#!/usr/bin/pythonimport SocketServer
- 一、为 SQL 启用远程连接 1. 单击“开始”,依次指向“程序”、“Microsoft SQL Server 2005”和“配置工具”,然
- Application对象 Application对象是个应用程序级的对象,用来在所有用户间共享信息,并可以在Web应用程序运行期间持久地保
- Python内建了map()和reduce()函数。如果你读过Google的那篇大名鼎鼎的论文“MapReduce: Simplified
- 进制转换进制之间的转换主要是利用十进制完成的。在进制转换的过程中,可以首先将相关进制转换为十进制的,再进行二次转换达到想要的效果。当然在进制
- 前言之前学习过node.js接触过express框架,最近为了编写一个mock server正好用到了express。下面正好就跟大家介绍一
- 本文实例讲述了js比较日期大小的方法。分享给大家供大家参考。具体如下:function DateDiff(d1,d2){ var resul
- 我们先以一个最简单的实例来了解模拟登录后页面的抓取过程,其原理在于模拟登录后 Cookies 的维护。1. 本节目标本节将讲解以 GitHu
- Beautiful Soup是一种Python的解析库,主要用于解析和处理HTML/XML内容。它是基于Python的标准库和第三方库的结合
- 一、密码字典所谓密码字典,主要是配合解密使用,一般情况用来暴力破解密码,是由指定字符排列组合组成的文本文件。如果知道密码设置的规律指定性生成
- 前言在日常开发工作中,我经常会遇到需要统计总数的场景,比如:统计订单总数、统计用户总数等。一般我们会使用MySQL 的count函数进行统计
- 用过jQuery的朋友一定对jQuery中方法的链式调用印象深刻,最近发布的YUI3也支持了方法的链式调用。这是一个非常不错的语法特性,能让
- 背景说明:10 * time.Second //正常数字相乘没错但是package mainimport "time"f
- 【eval()函数】JavaScript有许多小窍门来使编程更加容易。其中之一就是eval()函数,这个函数可以把一个字符串当作一个Java