PyTorch 之 强大的 hub 模块和搭建神经网络进行气温预测
作者:虚心求知的熊 发布时间:2022-11-11 14:41:15
本文参加新星计划人工智能(Pytorch)赛道:https://bbs.csdn.net/topics/613989052
一、强大的 hub 模块
hub 模块是调用别人训练好的网络架构以及训练好的权重参数,使得自己的一行代码就可以解决问题,方便大家进行调用。
hub 模块的 GITHUB 地址是 https://github.com/pytorch/hub。
hub 模块的模型 网址是 https://pytorch.org/hub/research-models。
1. hub 模块的使用
首先,我们进入网址。会出现如下的界面(这其中就是别人训练好的模型,我们通过一行代码就可以实现调用)。
然后,我们随便点开一个模型,会出现如下界面。
其中,第一个按钮是对应的 GITHUB 代码,第二个是使用谷歌配置好的实验环境,第三个进行模型演示。
2. hub 模块的代码演示
首先,我们进行基本的导入。
import torch
model = torch.hub.load('pytorch/vision:v0.4.2', 'deeplabv3_resnet101', pretrained=True)
model.eval()
我们可以使用 hub.list()
查看对应 pytorch 版本的模型信息。
torch.hub.list('pytorch/vision:v0.4.2')
#Using cache found in C:\Users\Administrator/.cache\torch\hub\pytorch_vision_v0.4.2
#['alexnet',
# 'deeplabv3_resnet101',
# 'densenet121',
# 'densenet161',
# 'densenet169',
# 'densenet201',
# 'fcn_resnet101',
# 'googlenet',
# 'inception_v3',
# 'mobilenet_v2',
# 'resnet101',
# 'resnet152',
# 'resnet18',
# 'resnet34',
# 'resnet50',
# 'resnext101_32x8d',
# 'resnext50_32x4d',
# 'shufflenet_v2_x0_5',
# 'shufflenet_v2_x1_0',
# 'squeezenet1_0',
# 'squeezenet1_1',
# 'vgg11',
# 'vgg11_bn',
# 'vgg13',
# 'vgg13_bn',
# 'vgg16',
# 'vgg16_bn',
# 'vgg19',
# 'vgg19_bn',
# 'wide_resnet101_2',
# 'wide_resnet50_2']
我们可以从 pytorch 的网站上下载一个实例。
# Download an example image from the pytorch website
import urllib
url, filename = ("https://github.com/pytorch/hub/raw/master/dog.jpg", "dog.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
我们执行样本,这里需要注意的是 torchvision。
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
我们需要将输入和模型移动到GPU以获得速度(如果可用)。
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)['out'][0]
output_predictions = output.argmax(0)
我们可以创建一个调色板,为每个类选择一种颜色。
# create a color pallette, selecting a color for each class
palette = torch.tensor([2 ** 25 - 1, 2 ** 15 - 1, 2 ** 21 - 1])
colors = torch.as_tensor([i for i in range(21)])[:, None] * palette
colors = (colors % 255).numpy().astype("uint8")
我们可以使用 hub 模块中的模型绘制每种颜色 21 个类别的语义分割预测。
# plot the semantic segmentation predictions of 21 classes in each color
r = Image.fromarray(output_predictions.byte().cpu().numpy()).resize(input_image.size)
r.putpalette(colors)
import matplotlib.pyplot as plt
plt.imshow(r)
plt.show()
二、搭建神经网络进行气温预测
1. 数据信息处理 在最开始,我们需要导入必备的库。
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import torch
import torch.optim as optim
import warnings
warnings.filterwarnings("ignore")
%matplotlib inline
我们需要观察一下自己的数据都有哪些信息,在此之前,我们需要进行数据的读入,并打印数据的前五行进行观察。
features = pd.read_csv('temps.csv')
features.head()
#yearmonthdayweektemp_2temp_1averageactualfriend
#0201611Fri454545.64529
#1201612Sat444545.74461
#2201613Sun454445.84156
#3201614Mon444145.94053
#4201615Tues414046.04441
在我们的数据表中,包含如下数据信息:
(1) year 表示年数时间信息。
(2) month 表示月数时间信息。
(3) day 表示天数时间信息。
(4) week 表示周数时间信息。
(5) temp_2 表示前天的最高温度值。
(6) temp_1 表示昨天的最高温度值。
(7) average 表示在历史中,每年这一天的平均最高温度值。
(8) actual 表示这就是我们的标签值了,当天的真实最高温度。
(9) friend 表示这一列可能是凑热闹的,你的朋友猜测的可能值,咱们不管它就好了。
在获悉每一个数据的信息之后,我们需要知道一共有多少个数据。
print('数据维度:', features.shape)
#数据维度: (348, 9)
(348, 9) 表示一共有 348 天,每一天有 9 个数据特征。
对于这么多的数据,直接进行行和列的操作可能会不太容易,因此,我们可以导入时间数据模块,将其转换为标准的时间信息。
# 处理时间数据
import datetime
# 分别得到年,月,日
years = features['year']
months = features['month']
days = features['day']
# datetime格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
我们可以读取新列 dates 中的部分数据。
dates[:5]
#[datetime.datetime(2016, 1, 1, 0, 0),
# datetime.datetime(2016, 1, 2, 0, 0),
# datetime.datetime(2016, 1, 3, 0, 0),
# datetime.datetime(2016, 1, 4, 0, 0),
# datetime.datetime(2016, 1, 5, 0, 0)]
2. 数据图画绘制
在基本数据处理完成后,我们就开始图画的绘制,在最开始,需要指定为默认的风格。
plt.style.use('fivethirtyeight')
设置布局信息。
# 设置布局
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize = (10,10))
fig.autofmt_xdate(rotation = 45)
设置标签值信息。
#标签值
ax1.plot(dates, features['actual'])
ax1.set_xlabel(''); ax1.set_ylabel('Temperature'); ax1.set_title('Max Temp')
绘制昨天也就是 temp_1 的数据图画。
# 昨天
ax2.plot(dates, features['temp_1'])
ax2.set_xlabel(''); ax2.set_ylabel('Temperature'); ax2.set_title('Previous Max Temp')
绘制前天也就是 temp_2 的数据图画。
# 前天
ax3.plot(dates, features['temp_2'])
ax3.set_xlabel('Date'); ax3.set_ylabel('Temperature'); ax3.set_title('Two Days Prior Max Temp')
绘制朋友也就是 friend 的数据图画。
# 我的逗逼朋友
ax4.plot(dates, features['friend'])
ax4.set_xlabel('Date'); ax4.set_ylabel('Temperature'); ax4.set_title('Friend Estimate')
在上述信息设置完成后,开始图画的绘制。
plt.tight_layout(pad=2)
对原始数据中的信息进行编码,这里主要是指周数信息。
# 独热编码
features = pd.get_dummies(features)
features.head(5)
#yearmonthdaytemp_2temp_1averageactualfriendweek_Friweek_Monweek_Satweek_Sunweek_Thursweek_Tuesweek_Wed
#0201611454545.645291000000
#1201612444545.744610010000
#2201613454445.841560001000
#3201614444145.940530100000
#4201615414046.044410000010
在周数信息编码完成后,我们将准确值进行标签操作,在特征数据中去掉标签数据,并将此时数据特征中的标签信息保存一下,并将其转换成合适的格式。
# 标签
labels = np.array(features['actual'])
# 在特征中去掉标签
features= features.drop('actual', axis = 1)
# 名字单独保存一下,以备后患
feature_list = list(features.columns)
# 转换成合适的格式
features = np.array(features)
我们可以查看此时特征数据的具体数量。
features.shape
#(348, 14)
(348, 14) 表示我们的特征数据当中一共有 348 个,每一个有 14 个特征。
我们可以查看第一个的具体数据。
from sklearn import preprocessing
input_features = preprocessing.StandardScaler().fit_transform(features)
input_features[0]
#array([ 0. , -1.5678393 , -1.65682171, -1.48452388, -1.49443549,
# -1.3470703 , -1.98891668, 2.44131112, -0.40482045, -0.40961596,
# -0.40482045, -0.40482045, -0.41913682, -0.40482045])
3. 构建网络模型
x = torch.tensor(input_features, dtype = float)
y = torch.tensor(labels, dtype = float)
# 权重参数初始化
weights = torch.randn((14, 128), dtype = float, requires_grad = True)
biases = torch.randn(128, dtype = float, requires_grad = True)
weights2 = torch.randn((128, 1), dtype = float, requires_grad = True)
biases2 = torch.randn(1, dtype = float, requires_grad = True)
learning_rate = 0.001
losses = []
for i in range(1000):
# 计算隐层
hidden = x.mm(weights) + biases
# 加入激活函数
hidden = torch.relu(hidden)
# 预测结果
predictions = hidden.mm(weights2) + biases2
# 通计算损失
loss = torch.mean((predictions - y) ** 2)
losses.append(loss.data.numpy())
# 打印损失值
if i % 100 == 0:
print('loss:', loss)
#返向传播计算
loss.backward()
#更新参数
weights.data.add_(- learning_rate * weights.grad.data)
biases.data.add_(- learning_rate * biases.grad.data)
weights2.data.add_(- learning_rate * weights2.grad.data)
biases2.data.add_(- learning_rate * biases2.grad.data)
# 每次迭代都得记得清空
weights.grad.data.zero_()
biases.grad.data.zero_()
weights2.grad.data.zero_()
biases2.grad.data.zero_()
#loss: tensor(8347.9924, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(152.3170, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(145.9625, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(143.9453, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(142.8161, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(142.0664, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(141.5386, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(141.1528, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(140.8618, dtype=torch.float64, grad_fn=<MeanBackward0>)
#loss: tensor(140.6318, dtype=torch.float64, grad_fn=<MeanBackward0>)
我们查看预测数据的具体数量,应该是一共有 348 个,每个只有一个值,也就是 (348,1)。
predictions.shape
#torch.Size([348, 1])
4. 更简单的构建网络模型
input_size = input_features.shape[1]
hidden_size = 128
output_size = 1
batch_size = 16
my_nn = torch.nn.Sequential(
torch.nn.Linear(input_size, hidden_size),
torch.nn.Sigmoid(),
torch.nn.Linear(hidden_size, output_size),
)
cost = torch.nn.MSELoss(reduction='mean')
optimizer = torch.optim.Adam(my_nn.parameters(), lr = 0.001)
# 训练网络
losses = []
for i in range(1000):
batch_loss = []
# MINI-Batch方法来进行训练
for start in range(0, len(input_features), batch_size):
end = start + batch_size if start + batch_size < len(input_features) else len(input_features)
xx = torch.tensor(input_features[start:end], dtype = torch.float, requires_grad = True)
yy = torch.tensor(labels[start:end], dtype = torch.float, requires_grad = True)
prediction = my_nn(xx)
loss = cost(prediction, yy)
optimizer.zero_grad()
loss.backward(retain_graph=True)
optimizer.step()
batch_loss.append(loss.data.numpy())
# 打印损失
if i % 100==0:
losses.append(np.mean(batch_loss))
print(i, np.mean(batch_loss))
#0 3950.7627
#100 37.9201
#200 35.654438
#300 35.278366
#400 35.116814
#500 34.986076
#600 34.868954
#700 34.75414
#800 34.637356
#900 34.516705
我们可以得到如下的预测训练结果,将其用图画的形式展现出来。
x = torch.tensor(input_features, dtype = torch.float)
predict = my_nn(x).data.numpy()
# 转换日期格式
dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in dates]
# 创建一个表格来存日期和其对应的标签数值
true_data = pd.DataFrame(data = {'date': dates, 'actual': labels})
# 同理,再创建一个来存日期和其对应的模型预测值
months = features[:, feature_list.index('month')]
days = features[:, feature_list.index('day')]
years = features[:, feature_list.index('year')]
test_dates = [str(int(year)) + '-' + str(int(month)) + '-' + str(int(day)) for year, month, day in zip(years, months, days)]
test_dates = [datetime.datetime.strptime(date, '%Y-%m-%d') for date in test_dates]
predictions_data = pd.DataFrame(data = {'date': test_dates, 'prediction': predict.reshape(-1)})
# 真实值
plt.plot(true_data['date'], true_data['actual'], 'b-', label = 'actual')
# 预测值
plt.plot(predictions_data['date'], predictions_data['prediction'], 'ro', label = 'prediction')
plt.xticks(rotation = '60');
plt.legend()
# 图名
plt.xlabel('Date'); plt.ylabel('Maximum Temperature (F)'); plt.title('Actual and Predicted Values');
来源:https://blog.csdn.net/weixin_45891612/article/details/129625581


猜你喜欢
- 本文以简单示例分析了python中关键字is与 ==的区别,供大家参考一下。首先说明一下Python学习中几个相关的小知识点。Python中
- 如果电脑是第一次安装MySQL,一般不会出现这样的报错。如下图所示。starting the server失败,通常是因为上次安装的该软件未
- 本文实例讲述了go语言日志记录库简单使用方法。分享给大家供大家参考。具体实现方法如下:package mainimport ( &
- Python具有基本的文本文件读写功能。Python的标准库提供有更丰富的读写功能。文本文件的读写主要通过open()所构建的文件对象来实现
- 在对跨多个表格的数据进行组合时,有时很难搞清楚要使用哪一个SQL句法。我将在这里对将多个表格中的查询合并至单一声明中的常用方式进行阐述。在这
- django执行sql语句后得到的返回结果是一个结果集,直接把结果转json返回给前端会报错,需要先遍历转字典在转json,特别注意mode
- 即将上线的百度C2C平台百度“有啊”开始对百度HI用户进行邀请,其首页页面、“有啊”LOGO也首次曝光。从曝光的图片看,百度“有啊”的主色调
- 参考网址构建网络我们可以通过torch.nn包来构建网络,现在你已经看过了autograd,nn在autograd的基础上定义模型和求微分。
- 今早开机发现,打开SQL Server 2008 的 SQL Server Management Studio,输入sa的密码发现,无法登陆
- 目录1.jupyter简介2.jupyter基础操作2.1windows更新pip库2.2jupyter安装2.3初次启动jupyter2.
- 正则表达式,贪婪匹配与非贪婪匹配正则表达式前戏以某app注册页面获取手机号为例. 其有很多校验规则: 国内手机号必须是11位,纯数字,是常规
- 本文介绍的函数其实是PHP手册上本来就有的,但是由于这些函数独立性较强,查找不易,所以单独介绍一下,方便查阅。 1. 获取所有可用的模块 -
- //by zdzhuo <html> <head> <script type=
- 一、业务需求在使用Python进行业务开发的时候,需要将一些数据保存到本地文件存储,方便后面进行数据分析展示。二、需求分析通过查看需求可得出
- 这篇文章主要介绍了python如何使用jt400.jar包代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价
- 1. 从键盘输入一个整数,求 100 除以它的商,并显示输出。要求对从键盘输入的数值进行异常处理。try: n=i
- 本文实例为大家分享了bootstrap实现二级下拉菜单展示的具体代码,供大家参考,具体内容如下<!DOCTYPE html> &
- 今天突然想起这个问题, 就好好搜索整理一下,不过在开始归纳之前,请先来一起做做这个小实验:忽略一切实际的外在情况, 你看了下面的按钮,第一本
- 扫雷是一款益智类小游戏,最早于 1992 年由微软在 Windows 上发行,游戏适合于全年龄段,规则简单,即在最短的时间内找出所有非雷格子
- MySQL 8.0.28引入新功能MySQL 8.0.28开始,新增一个特性,支持监控统计并限制各个连接(会话)的内存消耗,避免大量用户连接