网络编程
位置:首页>> 网络编程>> Python编程>> Python实现的径向基(RBF)神经网络示例

Python实现的径向基(RBF)神经网络示例

作者:罗兵  发布时间:2022-03-06 23:44:35 

标签:Python,神经网络

本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:


from numpy import array, append, vstack, transpose, reshape, \
        dot, true_divide, mean, exp, sqrt, log, \
        loadtxt, savetxt, zeros, frombuffer
from numpy.linalg import norm, lstsq
from multiprocessing import Process, Array
from random import sample
from time import time
from sys import stdout
from ctypes import c_double
from h5py import File
def metrics(a, b):
 return norm(a - b)
def gaussian (x, mu, sigma):
 return exp(- metrics(mu, x)**2 / (2 * sigma**2))
def multiQuadric (x, mu, sigma):
 return pow(metrics(mu,x)**2 + sigma**2, 0.5)
def invMultiQuadric (x, mu, sigma):
 return pow(metrics(mu,x)**2 + sigma**2, -0.5)
def plateSpine (x,mu):
 r = metrics(mu,x)
 return (r**2) * log(r)
class Rbf:
 def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):
   self.prefix = prefix
   self.workers = workers
   self.extra_neurons = extra_neurons
   # Import partial model
   if from_files is not None:
     w_handle = self.w_handle = File(from_files['w'], 'r')
     mu_handle = self.mu_handle = File(from_files['mu'], 'r')
     sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r')
     self.w = w_handle['w']
     self.mu = mu_handle['mu']
     self.sigmas = sigma_handle['sigmas']
     self.neurons = self.sigmas.shape[0]
 def _calculate_error(self, y):
   self.error = mean(abs(self.os - y))
   self.relative_error = true_divide(self.error, mean(y))
 def _generate_mu(self, x):
   n = self.n
   extra_neurons = self.extra_neurons
   # TODO: Make reusable
   mu_clusters = loadtxt('clusters100.txt', delimiter='\t')
   mu_indices = sample(range(n), extra_neurons)
   mu_new = x[mu_indices, :]
   mu = vstack((mu_clusters, mu_new))
   return mu
 def _calculate_sigmas(self):
   neurons = self.neurons
   mu = self.mu
   sigmas = zeros((neurons, ))
   for i in xrange(neurons):
     dists = [0 for _ in xrange(neurons)]
     for j in xrange(neurons):
       if i != j:
         dists[j] = metrics(mu[i], mu[j])
     sigmas[i] = mean(dists)* 2
          # max(dists) / sqrt(neurons * 2))
   return sigmas
 def _calculate_phi(self, x):
   C = self.workers
   neurons = self.neurons
   mu = self.mu
   sigmas = self.sigmas
   phi = self.phi = None
   n = self.n
   def heavy_lifting(c, phi):
     s = jobs[c][1] - jobs[c][0]
     for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):
       for j in xrange(neurons):
         # phi[i, j] = metrics(x[i,:], mu[j])**3)
         # phi[i, j] = plateSpine(x[i,:], mu[j]))
         # phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))
         phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])
         # phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))
       if k % 1000 == 0:
         percent = true_divide(k, s)*100
         print(c, ': {:2.2f}%'.format(percent))
     print(c, ': Done')
   # distributing the work between 4 workers
   shared_array = Array(c_double, n * neurons)
   phi = frombuffer(shared_array.get_obj())
   phi = phi.reshape((n, neurons))
   jobs = []
   workers = []
   p = n / C
   m = n % C
   for c in range(C):
     jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))
     worker = Process(target = heavy_lifting, args = (c, phi))
     workers.append(worker)
     worker.start()
   for worker in workers:
     worker.join()
   return phi
 def _do_algebra(self, y):
   phi = self.phi
   w = lstsq(phi, y)[0]
   os = dot(w, transpose(phi))
   return w, os
   # Saving to HDF5
   os_h5 = os_handle.create_dataset('os', data = os)
 def train(self, x, y):
   self.n = x.shape[0]
   ## Initialize HDF5 caches
   prefix = self.prefix
   postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'
   name_template = prefix + '-{}-' + postfix
   phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')
   os_handle = self.w_handle = File(name_template.format('os'), 'w')
   w_handle = self.w_handle = File(name_template.format('w'), 'w')
   mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')
   sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w')
   ## Mu generation
   mu = self.mu = self._generate_mu(x)
   self.neurons = mu.shape[0]
   print('({} neurons)'.format(self.neurons))
   # Save to HDF5
   mu_h5 = mu_handle.create_dataset('mu', data = mu)
   ## Sigma calculation
   print('Calculating Sigma...')
   sigmas = self.sigmas = self._calculate_sigmas()
   # Save to HDF5
   sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)
   print('Done')
   ## Phi calculation
   print('Calculating Phi...')
   phi = self.phi = self._calculate_phi(x)
   print('Done')
   # Saving to HDF5
   print('Serializing...')
   phi_h5 = phi_handle.create_dataset('phi', data = phi)
   del phi
   self.phi = phi_h5
   print('Done')
   ## Algebra
   print('Doing final algebra...')
   w, os = self.w, _ = self._do_algebra(y)
   # Saving to HDF5
   w_h5 = w_handle.create_dataset('w', data = w)
   os_h5 = os_handle.create_dataset('os', data = os)
   ## Calculate error
   self._calculate_error(y)
   print('Done')
 def predict(self, test_data):
   mu = self.mu = self.mu.value
   sigmas = self.sigmas = self.sigmas.value
   w = self.w = self.w.value
   print('Calculating phi for test data...')
   phi = self._calculate_phi(test_data)
   os = dot(w, transpose(phi))
   savetxt('iok3834.txt', os, delimiter='\n')
   return os
 @property
 def summary(self):
   return '\n'.join( \
     ['-----------------',
     'Training set size: {}'.format(self.n),
     'Hidden layer size: {}'.format(self.neurons),
     '-----------------',
     'Absolute error  : {:02.2f}'.format(self.error),
     'Relative error  : {:02.2f}%'.format(self.relative_error * 100)])
def predict(test_data):
 mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value
 sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value
 w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value
 n = test_data.shape[0]
 neur = mu.shape[0]
 mu = transpose(mu)
 mu.reshape((n, neur))
 phi = zeros((n, neur))
 for i in range(n):
   for j in range(neur):
     phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j])
 os = dot(w, transpose(phi))
 savetxt('iok3834.txt', os, delimiter='\n')
 return os

希望本文所述对大家Python程序设计有所帮助。

来源:http://www.cnblogs.com/hhh5460/p/4319654.html

0
投稿

猜你喜欢

手机版 网络编程 asp之家 www.aspxhome.com