Python的Django框架中的select_related函数对QuerySet 查询的优化
作者:CuGBabyBeaR 发布时间:2022-09-02 06:06:46
1. 实例的背景说明
假定一个个人信息系统,需要记录系统中各个人的故乡、居住地、以及到过的城市。数据库设计如下:
Models.py 内容如下:
from django.db import models
class Province(models.Model):
name = models.CharField(max_length=10)
def __unicode__(self):
return self.name
class City(models.Model):
name = models.CharField(max_length=5)
province = models.ForeignKey(Province)
def __unicode__(self):
return self.name
class Person(models.Model):
firstname = models.CharField(max_length=10)
lastname = models.CharField(max_length=10)
visitation = models.ManyToManyField(City, related_name = "visitor")
hometown = models.ForeignKey(City, related_name = "birth")
living = models.ForeignKey(City, related_name = "citizen")
def __unicode__(self):
return self.firstname + self.lastname
注1:创建的app名为“QSOptimize”
注2:为了简化起见,`qsoptimize_province` 表中只有2条数据:湖北省和广东省,`qsoptimize_city`表中只有三条数据:武汉市、十堰市和广州市
2. select_related()
对于一对一字段(OneToOneField)和外键字段(ForeignKey),可以使用select_related 来对QuerySet进行优化
作用和方法
在对QuerySet使用select_related()函数后,Django会获取相应外键对应的对象,从而在之后需要的时候不必再查询数据库了。以上例说明,如果我们需要打印数据库中的所有市及其所属省份,最直接的做法是:
>>> citys = City.objects.all()
>>> for c in citys:
... print c.province
...
这样会导致线性的SQL查询,如果对象数量n太多,每个对象中有k个外键字段的话,就会导致n*k+1次SQL查询。在本例中,因为有3个city对象就导致了4次SQL查询:
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 2 ;
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1 ;
注:这里的SQL语句是直接从Django的logger:‘django.db.backends'输出出来的
如果我们使用select_related()函数:
>>> citys = City.objects.select_related().all()
>>> for c in citys:
... print c.province
...
就只有一次SQL查询,显然大大减少了SQL查询的次数:
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM`QSOptimize_city`
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`) ;
这里我们可以看到,Django使用了INNER JOIN来获得省份的信息。顺便一提这条SQL查询得到的结果如下:
+----+-----------+-------------+----+-----------+
| id | name | province_id | id | name |
+----+-----------+-------------+----+-----------+
| 1 | 武汉市 | 1 | 1 | 湖北省 |
| 2 | 广州市 | 2 | 2 | 广东省 |
| 3 | 十堰市 | 1 | 1 | 湖北省 |
+----+-----------+-------------+----+-----------+
3 rows in set (0.00 sec)
使用方法
函数支持如下三种用法:
*fields 参数
select_related() 接受可变长参数,每个参数是需要获取的外键(父表的内容)的字段名,以及外键的外键的字段名、外键的外键的外键…。若要选择外键的外键需要使用两个下划线“__”来连接。
例如我们要获得张三的现居省份,可以用如下方式:
>>> zhangs = Person.objects.select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.living.province
触发的SQL查询如下:
SELECT `QSOptimize_person`.`id`, `QSOptimize_person`.`firstname`,
`QSOptimize_person`.`lastname`, `QSOptimize_person`.`hometown_id`, `QSOptimize_person`.`living_id`,
`QSOptimize_city`.`id`, `QSOptimize_city`.`name`, `QSOptimize_city`.`province_id`, `QSOptimize_province`.`id`,
`QSOptimize_province`.`name`
FROM `QSOptimize_person`
INNER JOIN `QSOptimize_city` ON (`QSOptimize_person`.`living_id` = `QSOptimize_city`.`id`)
INNER JOIN `QSOptimize_province` ON (`QSOptimize_city`.`province_id` = `QSOptimize_province`.`id`)
WHERE (`QSOptimize_person`.`lastname` = '三' AND `QSOptimize_person`.`firstname` = '张' );
可以看到,Django使用了2次 INNER JOIN 来完成请求,获得了city表和province表的内容并添加到结果表的相应列,这样在调用 zhangs.living的时候也不必再次进行SQL查询。
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| id | firstname | lastname | hometown_id | living_id | id | name | province_id | id | name |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
| 1 | 张 | 三 | 3 | 1 | 1 | 武汉市 | 1 | 1 | 湖北省 |
+----+-----------+----------+-------------+-----------+----+-----------+-------------+----+-----------+
1 row in set (0.00 sec)
然而,未指定的外键则不会被添加到结果中。这时候如果需要获取张三的故乡就会进行SQL查询了:
>>> zhangs.hometown.province
SELECT `QSOptimize_city`.`id`, `QSOptimize_city`.`name`,
`QSOptimize_city`.`province_id`
FROM `QSOptimize_city`
WHERE `QSOptimize_city`.`id` = 3 ;
SELECT `QSOptimize_province`.`id`, `QSOptimize_province`.`name`
FROM `QSOptimize_province`
WHERE `QSOptimize_province`.`id` = 1
同时,如果不指定外键,就会进行两次查询。如果深度更深,查询的次数更多。
值得一提的是,从Django 1.7开始,select_related()函数的作用方式改变了。在本例中,如果要同时获得张三的故乡和现居地的省份,在1.7以前你只能这样做:
>>> zhangs = Person.objects.select_related('hometown__province','living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province
但是1.7及以上版本,你可以像和queryset的其他函数一样进行链式操作:
>>> zhangs = Person.objects.select_related('hometown__province').select_related('living__province').get(firstname=u"张",lastname=u"三")
>>> zhangs.hometown.province
>>> zhangs.living.province
如果你在1.7以下版本这样做了,你只会获得最后一个操作的结果,在本例中就是只有现居地而没有故乡。在你打印故乡省份的时候就会造成两次SQL查询。
depth 参数
select_related() 接受depth参数,depth参数可以确定select_related的深度。Django会递归遍历指定深度内的所有的OneToOneField和ForeignKey。以本例说明:
>>> zhangs = Person.objects.select_related(depth = d)
d=1 相当于 select_related(‘hometown','living')
d=2 相当于 select_related(‘hometown__province','living__province')
无参数
select_related() 也可以不加参数,这样表示要求Django尽可能深的select_related。例如:zhangs = Person.objects.select_related().get(firstname=u”张”,lastname=u”三”)。但要注意两点:
Django本身内置一个上限,对于特别复杂的表关系,Django可能在你不知道的某处跳出递归,从而与你想的做法不一样。具体限制是怎么工作的我表示不清楚。
Django并不知道你实际要用的字段有哪些,所以会把所有的字段都抓进来,从而会造成不必要的浪费而影响性能。
小结
select_related主要针一对一和多对一关系进行优化。
select_related使用SQL的JOIN语句进行优化,通过减少SQL查询的次数来进行优化、提高性能。
可以通过可变长参数指定需要select_related的字段名。也可以通过使用双下划线“__”连接字段名来实现指定的递归查询。没有指定的字段不会缓存,没有指定的深度不会缓存,如果要访问的话Django会再次进行SQL查询。
也可以通过depth参数指定递归的深度,Django会自动缓存指定深度内所有的字段。如果要访问指定深度外的字段,Django会再次进行SQL查询。
也接受无参数的调用,Django会尽可能深的递归查询所有的字段。但注意有Django递归的限制和性能的浪费。
Django >= 1.7,链式调用的select_related相当于使用可变长参数。Django < 1.7,链式调用会导致前边的select_related失效,只保留最后一个。
猜你喜欢
- 如下所示:1.条件判断2.内置函数abs()3.内置模块 math.fabsabs() 与fabs()的区别abs()是一个内置函数,而fa
- asp编程手工定义参数的方法: Dim con As ADODB.Connection
- 前期准备1、机器人框架的下载和配置首先需要一个qq机器人框架,我使用的是基于mirai 以及 MiraiGo 开发的go-cqhttp(里面
- 配置篇打开设置界面许多设置都需要在设置界面进行,所以想要配置第一步就应该是打开设置界面。1> 鼠标操作打开。File --> P
- 第一步:下载svn的客户端,通俗一点来说就是小乌龟啦!去电脑管理的软件管理里面可以直接下载,方便迅速 下载之后直接安装就好了,但
- 前言我们都知道 Node.js 是以单线程的模式运行的,但它使用的是事件驱动来处理并发,这样有助于我们在多核 cpu 的系统上创建多个子进程
- 昨天在QQ群里讨论一个SQL优化的问题,语句大致如下:select A,min(B) from table group by A;--A,B
- 中间件是一个钩子框架,它们可以介入 Django 的请求和响应处理过程。 它是一个轻量级、底层的 插件 系统,用于在 全局修改 Django
- 本文实例为大家分享了python创建单词词库的具体代码,供大家参考,具体内容如下基本思路:以COCA两万单词表为基础,用python爬取金山
- PIL:Python Imaging Library,已经是Python平台事实上的图像处理标准库了。PIL功能非常强大,但API却非常简单
- #共有方法 + * instra='人生苦短'strb='我用python'lista=list(range
- 启用 SQL Server Browser 服务 在 Windows 防火墙中创建例外 在 Windows 防火墙中为 SQL Server
- 1、代码如下:import numpy as npfrom keras.models import Sequentialfrom keras
- 1.使用 urllib2 实现#! /usr/bin/env python# -*- coding=utf-8 -*- import url
- 摘要With the continuous development of time series prediction, Transform
- 表结构:数据:需求:按照company_id不同分组,然后分别求出相同company_id相邻记录touch_time的差值SQL:sele
- 如下所示:aa = [1,2,3,4,5]aa.index(max(aa))如果aa是numpy数组:aa = numpy.array([1
- 前言如果你在寻找python工作,那你的面试可能会涉及Python相关的问题。通过对网络资料的收集整理,本文列出了100道python的面试
- 大家还好吗?背景就不用多说了吧?本来我是初四上班的,现在延长到2月10日了。这是我工作以来时间最长的一个假期了。可惜哪也去不了。待在家里,没
- 在数据库中,对性能影响最大的包括数据库的锁策略、缓存策略、索引策略、存储策略、执行计划优化策略。索引策略决定数据库快速定位数据的效率,存储策