Python数字图像处理之霍夫线变换实现详解
作者:denny402 发布时间:2022-01-26 05:59:13
在图片处理中,霍夫变换主要是用来检测图片中的几何形状,包括直线、圆、椭圆等。
在skimage中,霍夫变换是放在tranform模块内,本篇主要讲解霍夫线变换。
对于平面中的一条直线,在笛卡尔坐标系中,可用y=mx+b来表示,其中m为斜率,b为截距。但是如果直线是一条垂直线,则m为无穷大,所有通常我们在另一坐标系中表示直线,即极坐标系下的r=xcos(theta)+ysin(theta)。即可用(r,theta)来表示一条直线。其中r为该直线到原点的距离,theta为该直线的垂线与x轴的夹角。如下图所示。
对于一个给定的点(x0,y0), 我们在极坐标下绘出所有通过它的直线(r,theta),将得到一条正弦曲线。如果将图片中的所有非0点的正弦曲线都绘制出来,则会存在一些交点。所有经过这个交点的正弦曲线,说明都拥有同样的(r,theta), 意味着这些点在一条直线上。
发上图所示,三个点(对应图中的三条正弦曲线)在一条直线上,因为这三个曲线交于一点,具有相同的(r, theta)。霍夫线变换就是利用这种方法来寻找图中的直线。
函数:skimage.transform.hough_line(img)
返回三个值:
h: 霍夫变换累积器
theta: 点与x轴的夹角集合,一般为0-179度
distance: 点到原点的距离,即上面的所说的r.
例:
import skimage.transform as st
import numpy as np
import matplotlib.pyplot as plt
# 构建测试图片
image = np.zeros((100, 100)) #背景图
idx = np.arange(25, 75) #25-74序列
image[idx[::-1], idx] = 255 # 线条\
image[idx, idx] = 255 # 线条/
# hough线变换
h, theta, d = st.hough_line(image)
#生成一个一行两列的窗口(可显示两张图片).
fig, (ax0, ax1) = plt.subplots(1, 2, figsize=(8, 6))
plt.tight_layout()
#显示原始图片
ax0.imshow(image, plt.cm.gray)
ax0.set_title('Input image')
ax0.set_axis_off()
#显示hough变换所得数据
ax1.imshow(np.log(1 + h))
ax1.set_title('Hough transform')
ax1.set_xlabel('Angles (degrees)')
ax1.set_ylabel('Distance (pixels)')
ax1.axis('image')
从右边那张图可以看出,有两个交点,说明原图像中有两条直线。
如果我们要把图中的两条直线绘制出来,则需要用到另外一个函数:
skimage.transform.hough_line_peaks(hspace, angles, dists)
用这个函数可以取出峰值点,即交点,也即原图中的直线。
返回的参数与输入的参数一样。我们修改一下上边的程序,在原图中将两直线绘制出来。
import skimage.transform as st
import numpy as np
import matplotlib.pyplot as plt
# 构建测试图片
image = np.zeros((100, 100)) #背景图
idx = np.arange(25, 75) #25-74序列
image[idx[::-1], idx] = 255 # 线条\
image[idx, idx] = 255 # 线条/
# hough线变换
h, theta, d = st.hough_line(image)
#生成一个一行三列的窗口(可显示三张图片).
fig, (ax0, ax1,ax2) = plt.subplots(1, 3, figsize=(8, 6))
plt.tight_layout()
#显示原始图片
ax0.imshow(image, plt.cm.gray)
ax0.set_title('Input image')
ax0.set_axis_off()
#显示hough变换所得数据
ax1.imshow(np.log(1 + h))
ax1.set_title('Hough transform')
ax1.set_xlabel('Angles (degrees)')
ax1.set_ylabel('Distance (pixels)')
ax1.axis('image')
#显示检测出的线条
ax2.imshow(image, plt.cm.gray)
row1, col1 = image.shape
for _, angle, dist in zip(*st.hough_line_peaks(h, theta, d)):
y0 = (dist - 0 * np.cos(angle)) / np.sin(angle)
y1 = (dist - col1 * np.cos(angle)) / np.sin(angle)
ax2.plot((0, col1), (y0, y1), '-r')
ax2.axis((0, col1, row1, 0))
ax2.set_title('Detected lines')
ax2.set_axis_off()
注意,绘制线条的时候,要从极坐标转换为笛卡尔坐标,公式为:
skimage还提供了另外一个检测直线的霍夫变换函数,概率霍夫线变换:
skimage.transform.probabilistic_hough_line(img, threshold=10, line_length=5,line_gap=3)
参数:
img: 待检测的图像。
threshold: 阈值,可先项,默认为10
line_length: 检测的最短线条长度,默认为50
line_gap: 线条间的最大间隙。增大这个值可以合并破碎的线条。默认为10
返回:
lines: 线条列表, 格式如((x0, y0), (x1, y0)),标明开始点和结束点。
下面,我们用canny算子提取边缘,然后检测哪些边缘是直线?
import skimage.transform as st
import matplotlib.pyplot as plt
from skimage import data,feature
#使用Probabilistic Hough Transform.
image = data.camera()
edges = feature.canny(image, sigma=2, low_threshold=1, high_threshold=25)
lines = st.probabilistic_hough_line(edges, threshold=10, line_length=5,line_gap=3)
# 创建显示窗口.
fig, (ax0, ax1, ax2) = plt.subplots(1, 3, figsize=(16, 6))
plt.tight_layout()
#显示原图像
ax0.imshow(image, plt.cm.gray)
ax0.set_title('Input image')
ax0.set_axis_off()
#显示canny边缘
ax1.imshow(edges, plt.cm.gray)
ax1.set_title('Canny edges')
ax1.set_axis_off()
#用plot绘制出所有的直线
ax2.imshow(edges * 0)
for line in lines:
p0, p1 = line
ax2.plot((p0[0], p1[0]), (p0[1], p1[1]))
row2, col2 = image.shape
ax2.axis((0, col2, row2, 0))
ax2.set_title('Probabilistic Hough')
ax2.set_axis_off()
plt.show()
来源:https://www.bbsmax.com/A/MAzAvK1MJ9/


猜你喜欢
- 一、文件形式的邮件#!/usr/bin/env python3#coding: utf-8import smtplibfrom email.
- 一、删除数据库日志文件的方法你曾经有在执行SQL的时候,数据库报事务日志已满,然后执行报错。然后纠结于怎么删除数据库日志,捣鼓半天吗,现在就
- 内置函数常用函数1.数学相关•abs(x)abs()返回一个数字的绝对值。如果给出复数,返回值就是该复数的模。>>>pri
- 前言本笔记通过记录 数据包 在网络中的生命履历来引出一些网络基础知识,如:MAC、ARP、IP、子网掩码、网关、集线器、交换机、路由器这些概
- string.Template()string.Template()内添加替换的字符, 使用"$"符号, 或 在字符串内
- 哪里出问题了python 中,使用 global 会将全局变量设为本函数可用。同时,在函数内部访问变量会先本地再全局。在嵌套函数中,使用 g
- 本文实例分析了MySQL索引用法。分享给大家供大家参考,具体如下:MYSQL描述:一个文章库,里面有两个表:category和article
- 前言:不用改掉系统python2.7 ,原来是python2.7,我们还进行python2.7的保留1.编译前准备其他库的安装(使用sudo
- 这篇文章主要介绍了简单了解Python读取大文件代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的
- networkx返回图的邻接矩阵最近有用到关于邻接矩阵的一些问题,平时不太常用所以一直没注意到networkx里面的函数,权当笔记了,有兴趣
- 前言字典是 Python 中很重要的数据类型,有很多内置函数需要了解。1.dict.clear清除字典中所有键值对。dict = {'
- 自动换行问题,正常字符的换行是比较合理的,而连续的数字和英文字符常常将容器撑大,挺让人头疼,下面介绍的是CSS如何实现换行的方法对于div,
- 很多小伙伴对 MySQL 的隔离级别一直心存疑惑,其实这个问题一点都不难,关键看怎么讲!单纯的看理论,绝对让你晕头转向,但是,如果我们通过几
- 前言Python中,.whl文件是使用wheel格式存储的一种Python安装包,同时也是一个标准的内置包格式。可以将其看作Python库的
- python的os module中有fork()函数用于生成子进程,生成的子进程是父进程的镜像,但是它们有各自的地址空间,子进程复制一份父进
- 匹配中文字符的正则表达式: [\u4e00-\u9fa5] 匹配双字节字符(包括汉字在内):[^\x00-\xff] <script&
- 保存时代码如下:figure_corp = figure.crop( (32*rate/2, 32*rate/2, 32-32*rate/2
- 代码如下:Function getTreeRootId(pNodeId) getSQL = "select note_id,par
- 背景关于 Go 语言的 Map,有两个需要注意的特性:Map 是并发读写不安全的,这是出于性能的考虑;Map 并发读写导致的错误,无法使用
- 效果图:1.安装django-ckeditorpip install django-ckeditor如果需要上传图片或者文件,还需要安装pi