pytorch .detach() .detach_() 和 .data用于切断反向传播的实现
作者:慢行厚积 发布时间:2022-01-30 21:24:56
当我们再训练网络的时候可能希望保持一部分的网络参数不变,只对其中一部分的参数进行调整;或者值训练部分分支网络,并不让其梯度对主网络的梯度造成影响,这时候我们就需要使用detach()函数来切断一些分支的反向传播
1 detach()[source]
返回一个新的Variable,从当前计算图中分离下来的,但是仍指向原变量的存放位置,不同之处只是requires_grad为false,得到的这个Variable永远不需要计算其梯度,不具有grad。
即使之后重新将它的requires_grad置为true,它也不会具有梯度grad
这样我们就会继续使用这个新的Variable进行计算,后面当我们进行反向传播时,到该调用detach()的Variable就会停止,不能再继续向前进行传播
源码为:
def detach(self):
"""Returns a new Variable, detached from the current graph.
Result will never require gradient. If the input is volatile, the output
will be volatile too.
.. note::
Returned Variable uses the same data tensor, as the original one, and
in-place modifications on either of them will be seen, and may trigger
errors in correctness checks.
"""
result = NoGrad()(self) # this is needed, because it merges version counters
result._grad_fn = None
return result
可见函数进行的操作有:
将grad_fn设置为None
将Variable的requires_grad设置为False
如果输入 volatile=True(即不需要保存记录,当只需要结果而不需要更新参数时这么设置来加快运算速度),那么返回的Variable volatile=True。(volatile已经弃用)
注意:
返回的Variable和原始的Variable公用同一个data tensor。in-place函数修改会在两个Variable上同时体现(因为它们共享data tensor),当要对其调用backward()时可能会导致错误。
举例:
比如正常的例子是:
import torch
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
out.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.1966, 0.1050, 0.0452])
当使用detach()但是没有进行更改时,并不会影响backward():
import torch
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)
#添加detach(),c的requires_grad为False
c = out.detach()
print(c)
#这时候没有对c进行更改,所以并不会影响backward()
out.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0.1966, 0.1050, 0.0452])
可见c,out之间的区别是c是没有梯度的,out是有梯度的
如果这里使用的是c进行sum()操作并进行backward(),则会报错:
import torch
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)
#添加detach(),c的requires_grad为False
c = out.detach()
print(c)
#使用新生成的Variable进行反向传播
c.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
Traceback (most recent call last):
File "test.py", line 13, in <module>
c.sum().backward()
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/tensor.py", line 102, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/autograd/__init__.py", line 90, in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn
如果此时对c进行了更改,这个更改会被autograd追踪,在对out.sum()进行backward()时也会报错,因为此时的值进行backward()得到的梯度是错误的:
import torch
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)
#添加detach(),c的requires_grad为False
c = out.detach()
print(c)
c.zero_() #使用in place函数对其进行修改
#会发现c的修改同时会影响out的值
print(c)
print(out)
#这时候对c进行更改,所以会影响backward(),这时候就不能进行backward(),会报错
out.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0., 0., 0.])
tensor([0., 0., 0.], grad_fn=<SigmoidBackward>)
Traceback (most recent call last):
File "test.py", line 16, in <module>
out.sum().backward()
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/tensor.py", line 102, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/anaconda3/envs/deeplearning/lib/python3.6/site-packages/torch/autograd/__init__.py", line 90, in backward
allow_unreachable=True) # allow_unreachable flag
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation
2 .data
如果上面的操作使用的是.data,效果会不同:
这里的不同在于.data的修改不会被autograd追踪,这样当进行backward()时它不会报错,回得到一个错误的backward值
import torch
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid()
print(out)
c = out.data
print(c)
c.zero_() #使用in place函数对其进行修改
#会发现c的修改同时也会影响out的值
print(c)
print(out)
#这里的不同在于.data的修改不会被autograd追踪,这样当进行backward()时它不会报错,回得到一个错误的backward值
out.sum().backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor([0.7311, 0.8808, 0.9526], grad_fn=<SigmoidBackward>)
tensor([0.7311, 0.8808, 0.9526])
tensor([0., 0., 0.])
tensor([0., 0., 0.], grad_fn=<SigmoidBackward>)
tensor([0., 0., 0.])
上面的内容实现的原理是:
In-place 正确性检查
所有的Variable都会记录用在他们身上的 in-place operations。如果pytorch检测到variable在一个Function中已经被保存用来backward,但是之后它又被in-place operations修改。当这种情况发生时,在backward的时候,pytorch就会报错。这种机制保证了,如果你用了in-place operations,但是在backward过程中没有报错,那么梯度的计算就是正确的。
⚠️下面结果正确是因为改变的是sum()的结果,中间值a.sigmoid()并没有被影响,所以其对求梯度并没有影响:
import torch
a = torch.tensor([1, 2, 3.], requires_grad=True)
print(a.grad)
out = a.sigmoid().sum() #但是如果sum写在这里,而不是写在backward()前,得到的结果是正确的
print(out)
c = out.data
print(c)
c.zero_() #使用in place函数对其进行修改
#会发现c的修改同时也会影响out的值
print(c)
print(out)
#没有写在这里
out.backward()
print(a.grad)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py
None
tensor(2.5644, grad_fn=<SumBackward0>)
tensor(2.5644)
tensor(0.)
tensor(0., grad_fn=<SumBackward0>)
tensor([0.1966, 0.1050, 0.0452])
3 detach_()[source]
将一个Variable从创建它的图中分离,并把它设置成叶子variable
其实就相当于变量之间的关系本来是x -> m -> y,这里的叶子variable是x,但是这个时候对m进行了.detach_()操作,其实就是进行了两个操作:
将m的grad_fn的值设置为None,这样m就不会再与前一个节点x关联,这里的关系就会变成x, m -> y,此时的m就变成了叶子结点
然后会将m的requires_grad设置为False,这样对y进行backward()时就不会求m的梯度
这么一看其实detach()和detach_()很像,两个的区别就是detach_()是对本身的更改,detach()则是生成了一个新的variable
比如x -> m -> y中如果对m进行detach(),后面如果反悔想还是对原来的计算图进行操作还是可以的
但是如果是进行了detach_(),那么原来的计算图也发生了变化,就不能反悔了
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/torch-autograd/#detachsource
来源:https://www.cnblogs.com/wanghui-garcia/p/10677071.html


猜你喜欢
- 首先来介绍一下什么是弦图?弦图主要用于展示多个对象之间的关系,连接圆上任意两点的线段叫做弦,弦(两点之间的连线)就代表着两者之间的关联关系。
- 1.排序示例表内容见此篇文章Mysql支持数据排序操作,例如,现在我们按照工资从小到大进行排序操作:mysql> select ena
- 分析当前用户下所有表的记录总数保证好用!begin dbms_utility.analyze_schema(user,'COMPUT
- 获取Tensor的维数>>> import tensorflow as tf>>> tf.__versi
- 将解压文件放置C盘配置环境变量 Patch:C:\mysql-5.7.25-winx64\bin;安装mysql切换到bin目录 cd C:
- 用css属性选择器可以有选择性地对链接样式进行控制,如让所有的外部链接都加一个小图标来标识其是一外部链接。但用css有弊端: 1、只支持Fi
- 直方图处理直方图从图像内部灰度级的角度对图像进行表述从直方图的角度对图像进行处理,可以达到增强图像显示效果的目的。直方图的含义直方图是图像内
- 从最简单的Web浏览器的登录界面开始,登录界面如下:进行Web页面自动化测试,对页面上的元素进行定位和操作是核心。而操作又是以定位为前提的,
- 如下所示:for line in file.readlines():line=line.strip('\n')来源:http
- 本文实例讲述了Node.js API详解之 Error模块用法。分享给大家供大家参考,具体如下:Node.js API详解之 ErrorNo
- 高可用架构对于互联网服务基本是标配,无论是应用服务还是数据库服务都需要做到高可用。虽然互联网服务号称7*24小时不间断服务,但多多少少有一些
- 问题描述:使用 SQL 2005 w/ SP2 的汇出汇入精灵将数据从 Access 汇入到 SQL2005 发生了错误,但使用在SQL 2
- var InterestKeywordListString = $("#userInterestKeywordLabel"
- # os 模块os.sep 可以取代操作系统特定的路径分隔符。windows下为 '\\'os.name
- insert的语法INSERT [LOW_PRIORITY | DELAYED | HIGH_PRIORITY] [IGNORE]
- 导言:在前面2节教程,我们探讨了如何使用FileUpload控件从客户端向服务器上传文件,以及如何在数据Web控件里显示二进制数据。在本节,
- 我们一般使用爬虫看到的都是最后的数据结果,对于整个的获取过程没有过多了解过。对于初学python的小伙伴们来说,不光是代码的练习,还是原理的
- python的matplotlib包支持我们画图,有点非常多,现学习如下。首先要导入包,在以后的示例中默认已经导入这两个包import ma
- 前言我们在上一期学习了关于Python 迭代器Iterator详情相关的概念,满足迭代器需要符合两个条件实现__iter__()方
- 一、random模块简介Python标准库中的random函数,可以生成随机浮点数、整数、字符串,甚至帮助你随机选择列表序列中的一个元素,打