Keras:Unet网络实现多类语义分割方式
作者:Robin Long 2018 发布时间:2022-02-26 16:36:49
标签:Keras,Unet,多类,语义分割
1 介绍
U-Net最初是用来对医学图像的语义分割,后来也有人将其应用于其他领域。但大多还是用来进行二分类,即将原始图像分成两个灰度级或者色度,依次找到图像中感兴趣的目标部分。
本文主要利用U-Net网络结构实现了多类的语义分割,并展示了部分测试效果,希望对你有用!
2 源代码
(1)训练模型
from __future__ import print_function
import os
import datetime
import numpy as np
from keras.models import Model
from keras.layers import Input, concatenate, Conv2D, MaxPooling2D, Conv2DTranspose, AveragePooling2D, Dropout, \
BatchNormalization
from keras.optimizers import Adam
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.callbacks import ModelCheckpoint
from keras import backend as K
from keras.layers.advanced_activations import LeakyReLU, ReLU
import cv2
PIXEL = 512 #set your image size
BATCH_SIZE = 5
lr = 0.001
EPOCH = 100
X_CHANNEL = 3 # training images channel
Y_CHANNEL = 1 # label iamges channel
X_NUM = 422 # your traning data number
pathX = 'I:\\Pascal VOC Dataset\\train1\\images\\' #change your file path
pathY = 'I:\\Pascal VOC Dataset\\train1\\SegmentationObject\\' #change your file path
#data processing
def generator(pathX, pathY,BATCH_SIZE):
while 1:
X_train_files = os.listdir(pathX)
Y_train_files = os.listdir(pathY)
a = (np.arange(1, X_NUM))
X = []
Y = []
for i in range(BATCH_SIZE):
index = np.random.choice(a)
# print(index)
img = cv2.imread(pathX + X_train_files[index], 1)
img = np.array(img).reshape(PIXEL, PIXEL, X_CHANNEL)
X.append(img)
img1 = cv2.imread(pathY + Y_train_files[index], 1)
img1 = np.array(img1).reshape(PIXEL, PIXEL, Y_CHANNEL)
Y.append(img1)
X = np.array(X)
Y = np.array(Y)
yield X, Y
#creat unet network
inputs = Input((PIXEL, PIXEL, 3))
conv1 = Conv2D(8, 3, activation='relu', padding='same', kernel_initializer='he_normal')(inputs)
pool1 = AveragePooling2D(pool_size=(2, 2))(conv1) # 16
conv2 = BatchNormalization(momentum=0.99)(pool1)
conv2 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = BatchNormalization(momentum=0.99)(conv2)
conv2 = Conv2D(64, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv2)
conv2 = Dropout(0.02)(conv2)
pool2 = AveragePooling2D(pool_size=(2, 2))(conv2) # 8
conv3 = BatchNormalization(momentum=0.99)(pool2)
conv3 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
conv3 = BatchNormalization(momentum=0.99)(conv3)
conv3 = Conv2D(128, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv3)
conv3 = Dropout(0.02)(conv3)
pool3 = AveragePooling2D(pool_size=(2, 2))(conv3) # 4
conv4 = BatchNormalization(momentum=0.99)(pool3)
conv4 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
conv4 = BatchNormalization(momentum=0.99)(conv4)
conv4 = Conv2D(256, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
conv4 = Dropout(0.02)(conv4)
pool4 = AveragePooling2D(pool_size=(2, 2))(conv4)
conv5 = BatchNormalization(momentum=0.99)(pool4)
conv5 = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
conv5 = BatchNormalization(momentum=0.99)(conv5)
conv5 = Conv2D(512, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv5)
conv5 = Dropout(0.02)(conv5)
pool4 = AveragePooling2D(pool_size=(2, 2))(conv4)
# conv5 = Conv2D(35, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv4)
# drop4 = Dropout(0.02)(conv5)
pool4 = AveragePooling2D(pool_size=(2, 2))(pool3) # 2
pool5 = AveragePooling2D(pool_size=(2, 2))(pool4) # 1
conv6 = BatchNormalization(momentum=0.99)(pool5)
conv6 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6)
up7 = (UpSampling2D(size=(2, 2))(conv7)) # 2
conv7 = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up7)
merge7 = concatenate([pool4, conv7], axis=3)
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
up8 = (UpSampling2D(size=(2, 2))(conv8)) # 4
conv8 = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up8)
merge8 = concatenate([pool3, conv8], axis=3)
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
up9 = (UpSampling2D(size=(2, 2))(conv9)) # 8
conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up9)
merge9 = concatenate([pool2, conv9], axis=3)
conv10 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
up10 = (UpSampling2D(size=(2, 2))(conv10)) # 16
conv10 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up10)
conv11 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv10)
up11 = (UpSampling2D(size=(2, 2))(conv11)) # 32
conv11 = Conv2D(8, 3, activation='relu', padding='same', kernel_initializer='he_normal')(up11)
# conv12 = Conv2D(3, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv11)
conv12 = Conv2D(3, 1, activation='relu', padding='same', kernel_initializer='he_normal')(conv11)
model = Model(input=inputs, output=conv12)
print(model.summary())
model.compile(optimizer=Adam(lr=1e-3), loss='mse', metrics=['accuracy'])
history = model.fit_generator(generator(pathX, pathY,BATCH_SIZE),
steps_per_epoch=600, nb_epoch=EPOCH)
end_time = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
#save your training model
model.save(r'V1_828.h5')
#save your loss data
mse = np.array((history.history['loss']))
np.save(r'V1_828.npy', mse)
(2)测试模型
from keras.models import load_model
import numpy as np
import matplotlib.pyplot as plt
import os
import cv2
model = load_model('V1_828.h5')
test_images_path = 'I:\\Pascal VOC Dataset\\test\\test_images\\'
test_gt_path = 'I:\\Pascal VOC Dataset\\test\\SegmentationObject\\'
pre_path = 'I:\\Pascal VOC Dataset\\test\\pre\\'
X = []
for info in os.listdir(test_images_path):
A = cv2.imread(test_images_path + info)
X.append(A)
# i += 1
X = np.array(X)
print(X.shape)
Y = model.predict(X)
groudtruth = []
for info in os.listdir(test_gt_path):
A = cv2.imread(test_gt_path + info)
groudtruth.append(A)
groudtruth = np.array(groudtruth)
i = 0
for info in os.listdir(test_images_path):
cv2.imwrite(pre_path + info,Y[i])
i += 1
a = range(10)
n = np.random.choice(a)
cv2.imwrite('prediction.png',Y[n])
cv2.imwrite('groudtruth.png',groudtruth[n])
fig, axs = plt.subplots(1, 3)
# cnt = 1
# for j in range(1):
axs[0].imshow(np.abs(X[n]))
axs[0].axis('off')
axs[1].imshow(np.abs(Y[n]))
axs[1].axis('off')
axs[2].imshow(np.abs(groudtruth[n]))
axs[2].axis('off')
# cnt += 1
fig.savefig("imagestest.png")
plt.close()
3 效果展示
说明:从左到右依次是预测图像,真实图像,标注图像。可以看出,对于部分数据的分割效果还有待改进,主要原因还是数据集相对复杂,模型难于找到其中的规律。

来源:https://blog.csdn.net/u013419318/article/details/102721288
猜你喜欢
为什么要问如何存储IP?首先就来阐明一下部分人得反问:为什么要问IP得怎样存,直接varchar类型不就得了吗?其实做任何程序设计都要在功能
安装python-alipay-sdkpip install python-alipay-sdk --upgrade配置视图函数orders
最近刚好在学习python+scrapy的爬虫技术,因为mac是自带python2.7的,所以安装3.5版本有两种方法,一种是升级,一种是额
部署apache服务的步骤:准备环境:关闭防火墙 :service iptables stop设置开机关闭防火墙:chkconfig ipt
1. 什么是文件指纹?文件指纹就是打包后输出的文件名的后缀,主要用来对修改后的文件做版本区分。2. 文件指纹有哪几种?1. Has
最近工作中写了几个存储过程,需要向存储过程中传递字符串,因为SQL Server 2000中没有内置类似于 split 的函数,只好自己处理
给出地球上两点的经纬度,计算两点之间的球面距离。给出地球上三点的经纬度,求形成的三角形面积。对于这样的需求,可以通过使用半正失公式来计算得到
网页制作中用到的特效字,你一定是用图象处理软件制作的吧!告诉你,不用图象处理软件,我也能做出漂亮的特效字来,你看,阴影字我就是这样做出来的。
做查询页面,查询条件比较多的时候往往会涉及到级联。举个简单的例子,拿教务系统来说,我们要查询教学计划信息,查询条件是入学批次、学生层次(专升
关于webpack的配置和使用,网上已经有许多文章了,大多是在讲单页应用,当我们需要打包多个html时,事情就变得麻烦起来。怎么在webpa
问题:开发中常使用Navicat查询数据库,并修改数据库中的值。今天发现查询结果为只读,不能修改。一般连表查不能修改我是知道的,但是单表查居
我们在学习keras经常会看到下面这样的代码段:查阅官方文档可以知道:我们知道彩色图像一般会有Width, Height, Channels
常规通过迭代或set方法,都无法保证去重后的顺序问题如下,我们可以通过列表的索引功能,对set结果进行序列化old_list=["
1.元字符: . 它匹配除了换行字符外的任何字符,在 alternate 模式(re.DOTALL)下它甚至可以匹配换行 ^ 匹配行首。除非
ASP页面延迟的两个简单方法 asp延时第一种 代码如下:<% Response.Buffer = Tr
关于@property装饰器在Python中我们使用@property装饰器来把对函数的调用伪装成对属性的访问。那么为什么要这样做呢?因为@
前言这篇文章主要给大家总结了关于学习Python的新手们容易犯的几个错误,一共四个易犯错误,下面来看看详细的介绍吧。一、i+=1 不等于++
本文实例讲述了python实现对象列表根据某个属性排序的方法。分享给大家供大家参考,具体如下:对于一个已有的python list, 里面的
在matplotlib中,errorbar方法用于绘制带误差线的折线图,基本用法如下plt.errorbar(x=[1, 2, 3, 4],
本文实例讲述了python中__slots__的用法。分享给大家供大家参考。具体分析如下:定义__slots__ 后,可以再实例上分配的属性