Python基于sklearn库的分类算法简单应用示例
作者:Bryan__ 发布时间:2022-08-21 19:44:42
本文实例讲述了Python基于sklearn库的分类算法简单应用。分享给大家供大家参考,具体如下:
scikit-learn
已经包含在Anaconda中。也可以在官方下载源码包进行安装。本文代码里封装了如下机器学习算法,我们修改数据加载函数,即可一键测试:
# coding=gbk
'''
Created on 2016年6月4日
@author: bryan
'''
import time
from sklearn import metrics
import pickle as pickle
import pandas as pd
# Multinomial Naive Bayes Classifier
def naive_bayes_classifier(train_x, train_y):
from sklearn.naive_bayes import MultinomialNB
model = MultinomialNB(alpha=0.01)
model.fit(train_x, train_y)
return model
# KNN Classifier
def knn_classifier(train_x, train_y):
from sklearn.neighbors import KNeighborsClassifier
model = KNeighborsClassifier()
model.fit(train_x, train_y)
return model
# Logistic Regression Classifier
def logistic_regression_classifier(train_x, train_y):
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty='l2')
model.fit(train_x, train_y)
return model
# Random Forest Classifier
def random_forest_classifier(train_x, train_y):
from sklearn.ensemble import RandomForestClassifier
model = RandomForestClassifier(n_estimators=8)
model.fit(train_x, train_y)
return model
# Decision Tree Classifier
def decision_tree_classifier(train_x, train_y):
from sklearn import tree
model = tree.DecisionTreeClassifier()
model.fit(train_x, train_y)
return model
# GBDT(Gradient Boosting Decision Tree) Classifier
def gradient_boosting_classifier(train_x, train_y):
from sklearn.ensemble import GradientBoostingClassifier
model = GradientBoostingClassifier(n_estimators=200)
model.fit(train_x, train_y)
return model
# SVM Classifier
def svm_classifier(train_x, train_y):
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
model.fit(train_x, train_y)
return model
# SVM Classifier using cross validation
def svm_cross_validation(train_x, train_y):
from sklearn.grid_search import GridSearchCV
from sklearn.svm import SVC
model = SVC(kernel='rbf', probability=True)
param_grid = {'C': [1e-3, 1e-2, 1e-1, 1, 10, 100, 1000], 'gamma': [0.001, 0.0001]}
grid_search = GridSearchCV(model, param_grid, n_jobs = 1, verbose=1)
grid_search.fit(train_x, train_y)
best_parameters = grid_search.best_estimator_.get_params()
for para, val in list(best_parameters.items()):
print(para, val)
model = SVC(kernel='rbf', C=best_parameters['C'], gamma=best_parameters['gamma'], probability=True)
model.fit(train_x, train_y)
return model
def read_data(data_file):
data = pd.read_csv(data_file)
train = data[:int(len(data)*0.9)]
test = data[int(len(data)*0.9):]
train_y = train.label
train_x = train.drop('label', axis=1)
test_y = test.label
test_x = test.drop('label', axis=1)
return train_x, train_y, test_x, test_y
if __name__ == '__main__':
data_file = "H:\\Research\\data\\trainCG.csv"
thresh = 0.5
model_save_file = None
model_save = {}
test_classifiers = ['NB', 'KNN', 'LR', 'RF', 'DT', 'SVM','SVMCV', 'GBDT']
classifiers = {'NB':naive_bayes_classifier,
'KNN':knn_classifier,
'LR':logistic_regression_classifier,
'RF':random_forest_classifier,
'DT':decision_tree_classifier,
'SVM':svm_classifier,
'SVMCV':svm_cross_validation,
'GBDT':gradient_boosting_classifier
}
print('reading training and testing data...')
train_x, train_y, test_x, test_y = read_data(data_file)
for classifier in test_classifiers:
print('******************* %s ********************' % classifier)
start_time = time.time()
model = classifiers[classifier](train_x, train_y)
print('training took %fs!' % (time.time() - start_time))
predict = model.predict(test_x)
if model_save_file != None:
model_save[classifier] = model
precision = metrics.precision_score(test_y, predict)
recall = metrics.recall_score(test_y, predict)
print('precision: %.2f%%, recall: %.2f%%' % (100 * precision, 100 * recall))
accuracy = metrics.accuracy_score(test_y, predict)
print('accuracy: %.2f%%' % (100 * accuracy))
if model_save_file != None:
pickle.dump(model_save, open(model_save_file, 'wb'))
测试结果如下:
reading training and testing data...
******************* NB ********************
training took 0.004986s!
precision: 78.08%, recall: 71.25%
accuracy: 74.17%
******************* KNN ********************
training took 0.017545s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
******************* LR ********************
training took 0.061161s!
precision: 89.16%, recall: 92.50%
accuracy: 90.07%
******************* RF ********************
training took 0.040111s!
precision: 96.39%, recall: 100.00%
accuracy: 98.01%
******************* DT ********************
training took 0.004513s!
precision: 96.20%, recall: 95.00%
accuracy: 95.36%
******************* SVM ********************
training took 0.242145s!
precision: 97.53%, recall: 98.75%
accuracy: 98.01%
******************* SVMCV ********************
Fitting 3 folds for each of 14 candidates, totalling 42 fits
[Parallel(n_jobs=1)]: Done 42 out of 42 | elapsed: 6.8s finished
probability True
verbose False
coef0 0.0
degree 3
tol 0.001
shrinking True
cache_size 200
gamma 0.001
max_iter -1
C 1000
decision_function_shape None
random_state None
class_weight None
kernel rbf
training took 7.434668s!
precision: 98.75%, recall: 98.75%
accuracy: 98.68%
******************* GBDT ********************
training took 0.521916s!
precision: 97.56%, recall: 100.00%
accuracy: 98.68%
希望本文所述对大家Python程序设计有所帮助。
来源:https://blog.csdn.net/Bryan__/article/details/51288953
猜你喜欢
- 之前写一个 Demo里面 有些东西要使用d3实现一些效果 但是在很多论坛找资源都找不到可以在Vue里面使用D3.js的方法,npm 上面的D
- 本文实例讲述了PHP判断密码强度的方法。分享给大家供大家参考,具体如下:一、php页面$score = 0;if(!empty($_GET[
- 参考其他比较专业的博客系统,都在代码块上有一个复制代码的按钮。用来快速复制整个代码块的代码。于是我也想给我的博客增加一个这个功能。注:chr
- 1 常规错误的yum安装方法:在前文中记述了CentOS 6.5系统中通过yum方式快速地搭建了LNMP环境,那么是否也能在CentOS 7
- 图像的数组表示图像的RGB色彩模式图像一般使用RGB色彩模式,即每个像素点的颜色由红(R)、绿(G)、蓝(B)组成。RGB三个颜色通道的变化
- 在os模块中提供了两种调用 cmd 的方法,os.popen() 和 os.system()os.system(cmd) 是在执行comma
- Oracle数据库以其高可靠性、安全性、可兼容性,得到越来越多的企业的青睐。如何使Oracle数据库保持优良性能,这是许多数据库管理员关心的
- 本文实例总结了javascript设置文本框光标的方法。分享给大家供大家参考,具体如下:对于text//得到光标位置function get
- Ruby中有一个很方便的Struct类,用来实现结构体。这样就不用费力的去定义一个完整的类来仅仅用作访问属性。class Dog <
- 基于 Mysql 实现一个搜索引擎前言:其实 Mysql 很早就支持全文索引了,只不过一直只支持英文的检索,从5.7.6 版本开始,Mysq
- 一、 node安装1)如果不确定自己是否安装了node,可以在命令行工具内执行: node -v (检查一下 版本);2)如果 执行结果显示
- 上传图片: if (!empty($_FILES["img"]["name"])) { //提取文件
- 使用mysql二进制方式启动连接您可以使用MySQL二进制方式进入到mysql命令提示符下来连接MySQL数据库。实例以下是从命令行中连接m
- 以下所描述无理论依据,纯属经验谈。MySQL使用4.1以上版本,管他是什么字符集,一律使用默认。不用去设置MySQL。然后举个使用GB231
- ACCESS数据库中Field对象的caption属性(也就是标题)是用来设置数据字段的标题,在正常的数据库设计中为了保持维护的便利性,许多
- 有关 Web 字体的话题正在增多,对 Web 设计师来说,他们并不关注技术细节,不管是 TrueType 的 Hinting 技术
- 在做维护项目的时,我们经常会遇到索引维护的问题,通过语句,我们就可以判断某个表的索引是否需要重建。 执行一下语句:先分析表的索引 分析表的索
- 一段这样的JavaScript代码,猜猜结果如何?var i = 0, m =
- SQL Server判断语句(IF ELSE/CASE WHEN )执行顺序是 – 从上至下 – 从左至右 --,所当上一个条件满足时(无论
- python redis连接 有序集合去重的代码如下所述:# -*- coding: utf-8 -*- import redisfrom