Python可视化分析全球火山分布
作者:老贡讲Python 发布时间:2022-01-17 05:32:10
也就在前几天,南太平洋岛国汤加发生火山喷发,有专门的专家学者分析,这可能是30年来全球规模最大的一次海底火山喷发,它引发的海啸以及火山灰将对周边的大气、洋流、淡水、农业以及民众健康等都造成不同程度的影响。
今天小编就用Python当中的folium模块以及其他的可视化库来对全球的火山情况做一个分析。
准备工作
和以往一样,我们先导入需要数据分析过程当中需要用到的模块并且读取数据集,本次的数据集来自由kaggle网站,主要由美国著名的史密森学会整理所得
import pandas as pd
import folium.plugins as plugins
import folium
df_volcano = pd.read_csv("volcano.csv")
df_volcano.head()
output
数据集包含了这些个数据
df_volcano.columns
output
Index(['volcano_number', 'volcano_name', 'primary_volcano_type',
'last_eruption_year', 'country', 'region', 'subregion', 'latitude',
'longitude', 'elevation', 'tectonic_settings', 'evidence_category',
'major_rock_1', 'major_rock_2', 'major_rock_3', 'major_rock_4',
'major_rock_5', 'minor_rock_1', 'minor_rock_2', 'minor_rock_3',
'minor_rock_4', 'minor_rock_5', 'population_within_5_km',
'population_within_10_km', 'population_within_30_km',
'population_within_100_km'],
dtype='object')
全球火山带的分布可视化
我们通过调用folium模块来绘制一下全球各个火山的分布,代码如下
volcano_map = folium.Map()
# 将每一行火山的数据添加进来
for i in range(0, df_volcano.shape[0]):
volcano = df_volcano.iloc[i]
folium.Marker([volcano['latitude'], volcano['longitude']], popup=volcano['volcano_name']).add_to(volcano_map)
volcano_map
output
上述代码的逻辑大致来看就是先实例化一个Map()对象,然后遍历每一行的数据,主要针对的是数据集当中的经纬度数据,并且在地图上打上标签,我们点击每一个标签都会自动弹出对应的火山的名称
当然出来的可视化结果不怎么美观,我们先通过简单的直方图来看一下全球火山的分布情况,代码如下
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 4))
volcano_country = pd.DataFrame(df_volcano.groupby(['country']).size()).sort_values(0, ascending=True)
volcano_country.columns = ['Count']
volcano_country.tail(10).plot(kind='barh', legend=False, ax=ax1)
ax1.set_title('Number of Volcanoes per Country')
ax1.set_ylabel('Country')
ax1.set_xlabel('Count')
volcano_region = pd.DataFrame(df_volcano.groupby(['region']).size()).sort_values(0, ascending=True)
volcano_region.columns = ['Count']
volcano_region.tail(10).plot(kind='barh', legend=False, ax=ax2)
ax2.set_title('Number of Volcanoes per Region')
ax2.set_ylabel('Region')
ax2.set_xlabel('Count')
plt.tight_layout()
plt.show()
output
可以看到火山主要集中在美国、印度尼西亚以及日本较多,而单从地域来看,南美以及日本、中国台湾和印度尼西亚等地存在着较多的火山
全球火山带的分布可视化优化
接下来我们来优化一下之前绘制的全球火山分布的地图,调用folium模块当中CircleMarker方法,并且设定好标记的颜色与大小
volcano_map = folium.Map(zoom_start=10)
groups = folium.FeatureGroup('')
# 将每一行火山的数据添加进来
for i in range(0, df_volcano.shape[0]):
volcano = df_volcano.iloc[i]
groups.add_child(folium.CircleMarker([volcano['latitude'], volcano['longitude']],
popup=volcano['volcano_name'], radius=3, color='blue',
fill=True, fill_color='blue',fill_opacity=0.8))
volcano_map.add_child(groups)
volcano_map.add_child(folium.LatLngPopup())
output
地图可视化实战
然后我们来看一下这次火山的爆发地点,汤加共和国位于西南太平洋,属于大洋洲,具体位置是在西经175°和南纬20°左右,
import folium.plugins as plugins
import folium
m = folium.Map([-21.178986, -175.198242],
zoom_start=10,
control_scale=True, width='80%')
m
output
第一个参数非常明显代表的是经纬度,而zoom_start参数代表的是缩放的程度,要是我们需要进一步放大绘制的图表,可以通过调整这个参数来实现,而width参数代表的则是最后图表绘制出来的宽度。
在地图上打上标记
我们也可以在绘制出来的地图上面打上标记,例如画个圆圈,代码如下
m = folium.Map([-21.178986, -175.198242],
zoom_start=12,
control_scale=True, width='80%')
folium.Circle(location = [-21.177986, -175.199242], radius = 1500,
color = "purple").add_to(m)
m
output
或者给圈出来的区域标上颜色,代码如下
m = folium.Map([-21.178986, -175.198242],
zoom_start=12,
control_scale=True, width='80%')
folium.Circle(location = [-21.177986, -175.199242], radius = 1500,
color = "purple", fill = True, fill_color = "red").add_to(m)
m
output
来源:https://blog.csdn.net/Python4857/article/details/122578925


猜你喜欢
- 如下所示: matplotlib.pyplot.hist( x, bins=10, range=None, normed=Fa
- 多元函数拟合。如 电视机和收音机价格多销售额的影响,此时自变量有两个。python 解法:import numpy as npimport
- 世界疫情数据下载请点击》》:疫情数据下载注:此数据是2022年3月12号的结果,其中透明的地方代表确诊人数小于10万人,白色的地方代表无该国
- 本文介绍了 setuptools 框架的内容,它是 PEAK 的一个副项目,它提供了比 distutils 更加简单的包管理和发行功能。开始
- 面对缺失值三种处理方法:option 1: 去掉含有缺失值的样本(行)option 2:将含有缺失值的列(特征向量)去掉option 3:将
- 问题你需要在大数据集(比如数组或网格)上面执行计算。解决方案涉及到数组的重量级运算操作,可以使用NumPy库。NumPy的一个主要特征是它会
- 本文实例为大家分享了python图片插入文字的具体代码,供大家参考,具体内容如下问题如何在图片中插入大量文字并且自动换行效果原始图效果图注明
- 在大三的时候,一直就想搭建属于自己的一个博客,但由于各种原因,最终都不了了之,恰好最近比较有空,于是就自己参照网上的教程,搭建了属于自己的博
- 说明本实例能够监控聚划算的抢购按钮,在聚划算整点聚的时间到达时发出提醒(音频文件自己定义位置)并自动弹开页面(URL自己定义)。同时还可以通
- 本文实例讲述了关于php中SimpleXML 函数的用法,此函数是允许您把 XML 转换为对象,分享给大家供大家参考。具体分析如下:Simp
- 本文实例讲述了Python对切片命名清除索引的方法。分享给大家供大家参考,具体如下:问题:如何清理掉到处都是硬编码的切片索引解决方案:对切片
- Tkinter库制作记事本现在为了创建这个记事本,你的系统中应该已经安装了 Python 3 和 Tkinter。您可以根据系统要求下载合适
- 摘要: 每到情人节、七夕节,不少小伙伴大伙伴们都会遇到这样一个世纪问题——怎么给女朋友/老婆一个与众不同的节日惊喜。今天给大家分享一个独特的
- 简单总结:1、与类和实例无绑定关系的function都属于函数(function);2、与类和实例有绑定关系的function都属于方法(m
- 字符函数——返回字符值这些函数全都接收的是字符族类型的参数(CHR除外)并且返回字符值.除了特别说明的之外,这些函数大部分返回VARCHAR
- 前言python号称是编程界的万金油,那么是否可以做个读取电脑网卡wifi并暴力破解的小脚本呢?在这个基础上为了方便体验是不是可以将其打包成
- 如果你退出 Python 解释器并重新进入,你做的任何定义(变量和方法)都会丢失。因此,如果你想要编写一些更大的程序,为准备解释器输入使用一
- 在新建数据库或附加数据库后,想添加关系表,结果出现下面的错误: 此数据库没有有效所有者,因此无法安装数据库关系图支持对象。若要继续,请首先使
- 1.文章背景近期,笔者所在公司的某业务系统的存储临近极限,服务器马上就要跑不动了,由于该业务系统A包含多个子系统A1、A2、A3 ... A
- 上一篇文章中,我们介绍了python实现图片处理和特征提取详解,这里我们再来看看Python通过OpenCV实现批量剪切图片,具体如下。做图