networkx库绘制带权图给无权图加权重输出
作者:zheng____ 发布时间:2022-01-29 05:54:23
问题
最近在研究图学习,在用networkx库绘图的时候发现问题。
'''
author:zheng
time:2020.10.23
'''
import networkx as nx
import random
g = nx.karate_club_graph() # 空手道俱乐部
for u,v in g.edges:
print(u,v)
g.add_edge(u, v, weight=random.uniform(0, 1)) # 权值为(0,1)间的随机数
print(g.edges())
输出结果
[(0, 1), (0, 2), (0, 3), (0, 4), (0, 5), (0, 6), (0, 7), (0, 8), (0, 10), (0, 11), (0, 12), (0, 13), (0, 17), (0, 19), (0, 21), (0, 31), (1, 2), (1, 3), (1, 7), (1, 13), (1, 17), (1, 19), (1, 21), (1, 30), (2, 3), (2, 7), (2, 8), (2, 9), (2, 13), (2, 27), (2, 28), (2, 32), (3, 7), (3, 12), (3, 13), (4, 6), (4, 10), (5, 6), (5, 10), (5, 16), (6, 16), (8, 30), (8, 32), (8, 33), (13, 33), (19, 33), (31, 24), (31, 25), (31, 28), (31, 32), (31, 33), (30, 32), (30, 33), (9, 33), (27, 23), (27, 24), (27, 33), (28, 33), (32, 14), (32, 15), (32, 18), (32, 20), (32, 22), (32, 23), (32, 29), (32, 33), (33, 14), (33, 15), (33, 18), (33, 20), (33, 22), (33, 23), (33, 26), (33, 29), (23, 25), (23, 29), (25, 24), (29, 26)]
发现了问题,我明明通过random.uniform(0, 1)随机设置了权重为什么在结果输出中并未显示,是输入权重的问题,还是结果展示的问题。
'''
author:zheng
time:2020.10.23
'''
import networkx as nx
import random
g = nx.karate_club_graph() # 空手道俱乐部
for u,v in g.edges:
g.add_edge(u, v, weight=random.uniform(0, 1)) # 权值为(0,1)间的随机数
print(g.edges(data=True))
大家看看两个代码有没有什么不同,在中添加了
此时输出结果:
[(0, 1, {'weight': 0.49899129531032826}), (0, 2, {'weight': 0.7493395367183026}), (0, 3, {'weight': 0.9805046801748599}), (0, 4, {'weight': 0.644560549909913}), (0, 5, {'weight': 0.022461095194206915}), (0, 6, {'weight': 0.39855273941801683}), (0, 7, {'weight': 0.9167666610641618}), (0, 8, {'weight': 0.3736839965822629}), (0, 10, {'weight': 0.1685687039463848}), (0, 11, {'weight': 0.5900599708379352}), (0, 12, {'weight': 0.49772285717726605}), (0, 13, {'weight': 0.6988903320924684}), (0, 17, {'weight': 0.8108991409995218}), (0, 19, {'weight': 0.21743421569163335}), (0, 21, {'weight': 0.687637570308398}), (0, 31, {'weight': 0.13180440967486262}), (1, 2, {'weight': 0.0603379086168323}), (1, 3, {'weight': 0.9536653778354264}), (1, 7, {'weight': 0.1680232359702576}), (1, 13, {'weight': 0.23821372652905115}), (1, 17, {'weight': 0.6861169007257469}), (1, 19, {'weight': 0.006553274592374314}), (1, 21, {'weight': 0.23452495215883118}), (1, 30, {'weight': 0.7638165639559286}), (2, 3, {'weight': 0.18381620307197954}), (2, 7, {'weight': 0.08671998389998026}), (2, 8, {'weight': 0.7395899045684956}), (2, 9, {'weight': 0.5973616237830935}), (2, 13, {'weight': 0.25253256663029156}), (2, 27, {'weight': 0.4151629971620948}), (2, 28, {'weight': 0.6830413630275037}), (2, 32, {'weight': 0.10877354662752325}), (3, 7, {'weight': 0.3165078261209674}), (3, 12, {'weight': 0.3258985972202395}), (3, 13, {'weight': 0.5617183737707032}), (4, 6, {'weight': 0.9944831897451706}), (4, 10, {'weight': 0.4258447405573552}), (5, 6, {'weight': 0.17102663345956715}), (5, 10, {'weight': 0.41020894392823837}), (5, 16, {'weight': 0.24048864347638477}), (6, 16, {'weight': 0.5401785263069063}), (8, 30, {'weight': 0.4604358340149278}), (8, 32, {'weight': 0.9601569527970788}), (8, 33, {'weight': 0.2905405465193912}), (13, 33, {'weight': 0.2556445407164615}), (19, 33, {'weight': 0.3008126988319231}), (31, 24, {'weight': 0.8781944129721222}), (31, 25, {'weight': 0.392828914742127}), (31, 28, {'weight': 0.7410701847068474}), (31, 32, {'weight': 0.39869250595380246}), (31, 33, {'weight': 0.4380052794486696}), (30, 32, {'weight': 0.4587792580500568}), (30, 33, {'weight': 0.5106934704075864}), (9, 33, {'weight': 0.9037424067215868}), (27, 23, {'weight': 0.9151325306454512}), (27, 24, {'weight': 0.6079907996445639}), (27, 33, {'weight': 0.6168782680542676}), (28, 33, {'weight': 0.9529880704286767}), (32, 14, {'weight': 0.21711370788129514}), (32, 15, {'weight': 0.21906480255644156}), (32, 18, {'weight': 0.36297161231472697}), (32, 20, {'weight': 0.8295507296873654}), (32, 22, {'weight': 0.725850047579389}), (32, 23, {'weight': 0.06395474428944792}), (32, 29, {'weight': 0.021001018687274553}), (32, 33, {'weight': 0.29227780907194645}), (33, 14, {'weight': 0.7898337840851372}), (33, 15, {'weight': 0.06574640956244104}), (33, 18, {'weight': 0.3193055980182168}), (33, 20, {'weight': 0.22814267912232755}), (33, 22, {'weight': 0.934928086748862}), (33, 23, {'weight': 0.8780586608909188}), (33, 26, {'weight': 0.834765093283264}), (33, 29, {'weight': 0.8927802653939352}), (23, 25, {'weight': 0.18106036608743914}), (23, 29, {'weight': 0.7824721548411848}), (25, 24, {'weight': 0.9362577071184671}), (29, 26, {'weight': 0.06557785001633887})]
如何只输出权重
import networkx as nx
import random
g = nx.karate_club_graph() # 空手道俱乐部
for u,v in g.edges:
g.add_edge(u, v, weight=random.uniform(0, 1)) # 权值为(0,1)
for (u,v,d) in g.edges(data=True):
print(d['weight'])
输出结果
0.9175521740544361
0.09841104142600388
0.9557658899707079
0.9256010898041206
0.2519120041349847
0.48370396192288767
0.8354304958648846
0.758094795660556
0.7910256982243447
0.6281003207621544
0.9801420646231339
0.7941450155753779
0.3851720075568309
0.802202234860892
0.7923045754263267
0.5270583359776736
0.9523963539542339
0.7474601472346581
0.044707615637251674
0.5349188097983026
0.6158693844408302
0.9456154478628968
0.7547788968185274
0.5648525235741113
0.6657063624514532
0.3109915743055601
0.3969190047820317
0.8763009836310122
0.7101598558464499
0.012225959063178693
0.700579386399397
0.8304116006624506
0.426518724548162
0.07244870577629914
0.36116795615537345
0.45781457416039606
0.25726914791707645
0.29778955309109023
0.8892096639219873
0.39322230058450647
0.5085017515323529
0.9597980742524421
0.08034618164792517
0.9143712112937563
0.17242150180445381
0.8914706349104955
0.8480034205451665
0.8217034225251223
0.45552196009659873
0.3909280195122691
0.45119988941609357
0.02984583822414133
0.14404544949710196
0.45459370924953857
0.10296953351890004
0.4948127850493056
0.9238669854480596
0.9399144983422378
0.919211279645529
0.24084759450828674
0.4410486851096309
0.7699702465967465
0.27749525807367836
0.9449097003790671
0.5019309896062647
0.42774455164796255
0.43988066338230847
0.7405733579782761
0.2308870299365694
0.12306785713306911
0.7139426386075743
0.2640769424119722
0.031149630992576394
0.07700734539599274
0.37034537464573547
0.7034898163898959
0.8557141929947621
0.06539918397508715
来源:https://blog.csdn.net/zheng____/article/details/109812933


猜你喜欢
- 本文实例为大家分享了Python turtle实现贪吃蛇游戏的具体代码,供大家参考,具体内容如下# Simple Snake Game in
- 摘要:本文介绍了字符与编码的发展过程,相关概念的正确理解。举例说明了一些实际应用中,编码的实现方法。然后,本文讲述了通常对字符与编码的几种误
- 微信小程序 微信支付服务端集理论上集成微信支付的全部工作可以在小程序端完成,因为小程序js有访问网络的能力,但是为了安全,不暴露敏感key,
- 本文实例讲述了GO语言实现简单TCP服务的方法。分享给大家供大家参考。具体实现方法如下:package mainimport ("
- Golang开发环境搭建Go 语言开发包国外:https://golang.org/dl/国内(推荐): https://golang.go
- seek()方法在偏移设定该文件的当前位置。参数是可选的,默认为0,这意味着绝对的文件定位,它的值如果是1,这意味着寻求相对于当
- oracle命令删除用户:connect / as sysdba; shutdown abort; startup;&n
- scatter绘画散点图代码如下:import matplotlib.pyplot as pltplt.scatter(x,y,
- 对单词最后一个字母的预测LSTM 的原理自己找,这里只给出简单的示例代码,就是对单词最后一个字母的预测。# LSTM 的原理自己找,这里只给
- 尽管Python事实上并不是一门纯函数式编程语言,但它本身是一门多范型语言,并给了你足够的自由利用函数式编程的便利。函数式风格有着各种理论与
- Base64编码和解码Base64 不是加密算法,只是一种编码方式,数据从一种形式转换为另一种形式进行传输/存储。Base64 就是一种基于
- 本文介绍了python opencv之SURF算法示例,分享给大家,具体如下:目标:SURF算法基础opencv总SURF算法的使用原理:上
- 1、官网下载地址在官网找到你想安装的版本 官网地址:https://www.python.org/并且选择下载windows版本目前最新的版
- 本文采用拉普拉斯算子计算影像的模糊程度,小于阈值的影像被认为是模糊的,从而被移动到专门存放模糊影像的文件夹。本文只使用cv2和shutil库
- WGAN与GAN的不同去除sigmoid使用具有动量的优化方法,比如使用RMSProp要对Discriminator的权重做修整限制以确保l
- 这篇文章主要介绍下如何创建并调用函数。print():是打印放入对象的函数 len():是返回对象长度的函数 input():是让用户输入对
- 目录1.Python语法错误2.Python运行时错误前言:开发人员在编写程序时,难免会遇到错误,有的是编写人员疏忽造成的语法错误,有的是程
- 如果你在爬虫过程中有遇到“您的请求太过频繁,请稍后再试”,或者说代码完全正确,可是爬虫过程中突然就访问不了,那么恭喜你,你的爬虫被对方识破了
- 在公司做分布式深网爬虫,搭建了一套稳定的代理池服务,为上千个爬虫提供有效的代理,保证各个爬虫拿到的都是对应网站有效的 * ,从而保证爬虫快
- 下面就是今天下午的研究成果。发布系统需要响应用户的中断请求,需要在GET方法中杀掉由subprocess派生的子进程,刚开始直接用os.ki